Save this page
Save this page

My Saved Pages

  • Saved page.

My Saved Courses

  • Saved page.

Recently visited

  • Saved page.

Dr Maurizio Collu


Naval Architecture, Ocean and Marine Engineering

Personal statement

I am a Reader in Offshore Renewable Energy Systems, and I joined the NAOME Department of the University of Strathclyde in August 2018. My area of expertise is applied mechanics, focusing in particular on multidisciplinary, coupled model of dynamics for offshore renewable energy systems. I apply this expertise to develop conceptual and preliminary design methodologies for offshore renewable energy systems.

I am currently the Principal Investigator of one of the five EPSRC Joint UK-China Offshore Renewable Energy flagship projects, the 3 years, £ 0.8m project INNO-MPP  ( With my research group, we are focusing on the development of multi-purpose offshore platforms for the sustainable development of small/isolated communities, exploiting the synergies among offshore renewable energy and aquaculture industries.

I am also Work Package leader in the 3.5 years, € 10m EU H2020 project “The Blue Growth Farm” ( (, focusing on the development and demonstration of an automated, modular and environmentally friendly multi-functional platform for open sea farm installations of the Blue Growth Industry. In this project, I am in charge of the development of a multidisciplinary, coupled model of dynamics of this multi-purpose platform.

Furthermore, I am a Co-Investigator and Work Package leader in a prestigious 3 years, 3 m£ EPSRC project  HOME-Offshore (, which focuses on merging Artificial Intelligence, Robotic inspection and Advanced Physics Modelling to lower the cost of offshore wind farm maintenance.

I sit on several international committees, including the ITTC Specialist Committee on Hydrodynamic Modelling of Marine Renewable Energy Devices and the OMAE Ocean Renewable Energy technical committee.

In the past, I had been the Principal Investigator on an Innovate UK project, focusing on the conceptual and preliminary design of a novel floating support structure for tidal turbines ( I also led the conceptual design of the floating support structure in the £2.8m ETI funded project NOVA (, and coordinated the development of a coupled model of dynamics for a hybrid wind-wave offshore floating system in the EU FP7 project H2Ocean (

I am also leading the conceptual and preliminary design of aerodynamically alleviated marine vehicles (AAMV), an area of research initiated with my PhD, and for which I have been awarded the prestigious RINA “Calder Prize”. The work has been published in the Royal Society Proc A journal (doi:10.1098/rspa.2009.0459), and it also led to a patented novel trim control mechanism for high speed marine vehicles (Patent GB2472266).


On intermediate-scale open-sea experiments on floating offshore structures : feasibility and application on a spar support for offshore wind turbines
Ruzzo Carlo, Fiamma Vincenzo, Collu Maurizio, Failla Giuseppe, Nava Vincenzo, Arena Felice
Marine Structures Vol 61, pp. 220-237, (2018)
On mooring line tension and fatigue prediction for offshore vertical axis wind turbines : a comparison of lumped mass and quasi-static approaches
Cevasco D., Collu M., Rizzo C. M., Hall M.
Wind Engineering Vol 42, pp. 97-107, (2018)
Can a wind turbine learn to operate itself? Evaluation of the potential of a heuristic, data-driven self-optimizing control system for a 5MW offshore wind turbine
Iordanov Stefan Gueorguiev, Collu Maurizio, Cao Yi
Energy Procedia Vol 137, pp. 26-37, (2017)
Output-only identification of rigid body motions of floating structures : a case study
Ruzzo C., Failla G., Collu M., Nava V., Fiamma V., Arena F.
Procedia Engineering Vol 199, pp. 930-935, (2017)
On the comparison of the dynamic response of an offshore floating vawt system when adopting two different mooring system model of dynamics : quasi-static vs lumped mass approach
Cevasco Debora, Collu Maurizio, Hall Matthew, Rizzo Cesare M.
Ocean Renewable Energy, (2017)
Operational modal analysis of a spar-type floating platform using frequency domain decomposition method
Ruzzo Carlo, Failla Giuseppe, Collu Maurizio, Nava Vincenzo, Fiamma Vincenzo, Arena Felice
Energies Vol 9, (2016)

more publications


Naval Architecture, Ocean and Marine Engineering
Henry Dyer Building

Location Map

View University of Strathclyde in a larger map