
Dr Giuseppe Di Caprio
Strathclyde Chancellor's Fellow
Biomedical Engineering
Prize And Awards
- Strathclyde Chancellor's Fellow
- Recipient
- 11/4/2023
- Instructor in Pediatrics (Research Assistant Professor) - Harvard Medical School
- Recipient
- 1/2/2020
- Research Fellow in Cell Biology - Harvard Medical School
- Recipient
- 1/9/2015
- Post-doctoral Research Fellow - Harvard University
- Recipient
- 21/6/2012
Publications
- Genetic reversal of the globin switch concurrently modulates both fetal and sickle hemoglobin and reduces red cell sickling
- De Souza Daniel C, Hebert Nicolas, Esrick Erica B, Ciuculescu M Felicia, Archer Natasha M, Armant Myriam, Audureau Étienne, Brendel Christian, Di Caprio Giuseppe, Galactéros Frédéric, Liu Donghui, McCabe Amanda, Morris Emily, Schonbrun Ethan, Williams Dillon, Wood David K, Williams David A, Bartolucci Pablo, Higgins John M
- Nature Communications Vol 14 (2023)
- https://doi.org/10.1038/s41467-023-40923-5
- Deep neural network automated segmentation of cellular structures in volume electron microscopy
- Gallusser Benjamin, Maltese Giorgio, Di Caprio Giuseppe, Vadakkan Tegy John, Sanyal Anwesha, Somerville Elliott, Sahasrabudhe Mihir, O’connor Justin, Weigert Martin, Kirchhausen Tom
- Journal of Cell Biology Vol 222 (2023)
- https://doi.org/10.1083/jcb.202208005
- Inherited nuclear pore substructures template post-mitotic pore assembly
- Chou Yi Ying, Upadhyayula Srigokul, Houser Justin, He Kangmin, Skillern Wesley, Scanavachi Gustavo, Dang Song, Sanyal Anwesha, Ohashi Kazuka G, Di Caprio Giuseppe, Kreutzberger Alex JB, Vadakkan Tegy John, Kirchhausen Tom
- Developmental Cell Vol 56 (2021)
- https://doi.org/10.1016/j.devcel.2021.05.015
- MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease
- Demers Melanie, Sturtevant Sarah, Guertin Kevin R, Gupta Dipti, Desai Kunal, Vieira Benjamin F, Li Wenjing, Hicks Alexandra, Ismail Ayman, Goncąlves Bronner P, Caprio Giuseppe Di, Schonbrun Ethan, Hansen Scott, Musayev Faik N, Safo Martin K, Wood David K, Higgins John M, Light David R
- Blood Advances Vol 5, pp. 1388-1402 (2021)
- https://doi.org/10.1182/bloodadvances.2020003670
- Design and validation of a human brain endothelial microvessel-on-a-chip open microfluidic model enabling advanced optical imaging
- Salman Mootaz M, Marsh Graham, Kusters Ilja, Delincé Matthieu, Di Caprio Giuseppe, Upadhyayula Srigokul, de Nola Giovanni, Hunt Ronan, Ohashi Kazuka G, Gray Taylor, Shimizu Fumitaka, Sano Yasuteru, Kanda Takashi, Obermeier Birgit, Kirchhausen Tom
- Frontiers in Bioengineering and Biotechnology Vol 8, pp. 1-16 (2020)
- https://doi.org/10.3389/fbioe.2020.573775
- HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation
- Magupalli Venkat Giri, Negro Roberto, Tian Yuzi, Hauenstein Arthur V, Caprio Giuseppe Di, Skillern Wesley, Deng Qiufang, Orning Pontus, Alam Hasan B, Maliga Zoltan, Sharif Humayun, Hu Jun Jacob, Evavold Charles L, Kagan Jonathan C, Schmidt Florian I, Fitzgerald Katherine A, Kirchhausen Tom, Li Yongqing, Wu Hao
- Science Vol 369 (2020)
- https://doi.org/10.1126/SCIENCE.AAS8995
Research Interests
Cell engineering is predicted to be part of a regenerative medicine focused future. The human Mesenchymal Stem Cells (hMSC) are a cell type of major interest that are available from bone marrow, adipose tissue, and umbilical cord sources. Over 900 hMSC clinical trials have been conducted since 2004 and thousands of academic publications on potential hMSC treatments are published yearly. Despite this significant investigative effort, only few therapeutic products containing hMSCs or their derivative cells are approved yearly, mainly due to hMSC therapies requiring extensive safety testing by an independent contract research organization, sterile cold chain, and increased surgical time.
Our goal is to introduce a completely new paradigm in stem cell culturing where the standard trial and error approach to identify a suitable recipe is substituted by quantitative and continuous optimization. We intend to implement a next-generation bio-manufacturing process in which the stimulation is finely tuned in real time, based on the specific dynamics of the population, to overcome the issues associated with biological diversity and patient-specific conditions. The possibilities to combine different imaging technologies, to trigger imaging modalities based on the real-time image analysis results, and to synchronize image acquisition with external devices for sample manipulation (i.e., liquid handling or cell manipulation) enable the automation of complex workflows.
Quantitative Absorption Microscopy - A Circulatory System on Chip
This project is dedicated to the development of material technologies for mimicking the environment of the Circulatory System on Chip. In addition to the organ-on-chip fabrication, I am interested in performing quantitative measurements of other physical characteristics of cells, such as volume, protein mass, and oxygen tension. Resolving the distribution of different measured parameters enables better understanding of not only mean values of a cell population but also subtle differences in the response of each cell to its environment, genetic differences, and exposure to small molecules.
Professional Activities
- AI-Driven Segmentation and Smart Microscopy for Biomedical Imaging and Stem-Cell Engineering
- Speaker
- 18/12/2024
- Innovative assay for high-throughput single-cell measurement of red blood cell oxygen affinity: from haemoglobin polymerization in sickle cell patients to characterizing blood substitute functionality.
- Speaker
- 17/9/2024
- Biomedical Engineering (Organisational unit)
- Member
- 1/9/2024
- External Examiner PhD Viva
- Examiner
- 21/6/2024
- The role of quantitative imaging in AI-driven Microscopy
- Speaker
- 21/6/2024
- The Royal Microscopical Society (External organisation)
- Member
- 23/4/2024
Projects
- Leveraging additive manufacturing for novel microscopy hardware design and development
- Naveed Ul Islam, N (Research Co-investigator) Kallepalli, Akhil (Principal Investigator) Di Caprio, Giuseppe (Co-investigator)
- 03-Jan-2025 - 28-Jan-2028
- NorthWest Bio DTP 2024 | Nerea Caro Guerrero
- Witte, Kimia (Principal Investigator) Strawbridge, Rona J (Research Co-investigator) Di Caprio, Giuseppe (Research Co-investigator) Salmeron-Sanchez, Manuel (Research Co-investigator) Tokatlidis, Kostas (Research Co-investigator) Caro Guerrero, Nerea (Research Co-investigator)
- 01-Jan-2024 - 31-Jan-2028
- DTP 2224 University of Strathclyde | Eadie, Fraser
- Kallepalli, Akhil (Principal Investigator) Di Caprio, Giuseppe (Co-investigator) Eadie, Fraser (Research Co-investigator)
- 01-Jan-2024 - 01-Jan-2028
- AI-powered Smart Microscopy for future cardioprotective paracrine therapy
- Di Caprio, Giuseppe (Principal Investigator)
- Unlock the potential of cutting-edge research in the field of cell engineering and cardioprotective therapy through our collaborative PhD studentship with KU Leuven. We have one fully-funded PhD studentship in smart microscopy and cell engineering, starting in October 2024. Come join the group as we set up at the University of Strathclyde.
- 01-Jan-2024 - 30-Jan-2027
- AI-powered Smart Microscopy for Stem-Cell Engineering
- Di Caprio, Giuseppe (Principal Investigator)
- 01-Jan-2024 - 31-Jan-2027
- Characterize the functional properties of blood substitute by Quantitative Absorption Cytometry (QAC)
- Di Caprio, Giuseppe (Principal Investigator)
- 01-Jan-2024 - 31-Jan-2025
Contact
Dr
Giuseppe
Di Caprio
Strathclyde Chancellor's Fellow
Biomedical Engineering
Email: giuseppe.dicaprio@strath.ac.uk
Tel: 548 3842