Dr Conor McBride

Reader

Computer and Information Sciences

Publications

A type and scope safe universe of syntaxes with binding : their semantics and proofs
Allais Guillaume, Atkey Robert, Chapman James, McBride Conor, McKinna James
Journal of Functional Programming Vol 31 (2021)
https://doi.org/10.1017/S0956796820000076
Type systems for programs respecting dimensions
McBride Conor, Nordvall Forsberg Fredrik
Advanced Mathematical and Computational Tools in Metrology and Testing XII (2021) (2021)
Doo bee doo bee doo
Convent Lukas, Lindley Sam, McBride Conor, McLaughlin Craig
Journal of Functional Programming Vol 30 (2020)
https://doi.org/10.1017/S0956796820000039
A type and scope safe universe of syntaxes with binding : their semantics and proofs
Allais Guillaume, Atkey Robert, Chapman James, McBride Conor, McKinna James
International Conference on Functional Programming 2018, pp. 1-30 (2018)
https://doi.org/10.1145/3236785
Everybody's got to be somewhere
McBride Conor
Mathematically Structured Functional Programming, pp. 53-69 (2018)
https://doi.org/10.4204/EPTCS.275.6
Variations on inductive-recursive definitions
Ghani Neil, McBride Conor, Nordvall Forsberg Fredrik, Spahn Stephan
Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer Science 42nd International Symposium on Mathematical Foundations of Computer Science Leibniz International Proceedings in Informatics (2017)
https://doi.org/10.4230/LIPIcs.MFCS.2017.63

More publications

Professional activities

Invited Lecture Courses on Dependently Typed Programming Oregon Programming Languages Summer School, USA, 2010
Invited speaker
2010
IFIP Working Group (External organisation)
Member
2010
ICFP 2009
Member of programme committee
2009
Vol 19, Issues 3 & 4 (Special Issue on Mathematically Structured Functional Programming
Guest editor
1/2008
Journal of Functional Programming (Journal)
Editor
1/2008

More professional activities

Projects

KTP - Cambridge Quantum Computing (CQC) / R190328-202
McBride, Conor (Principal Investigator) Atkey, Bob (Co-investigator) Nordvall Forsberg, Fredrik (Co-investigator)
24-Jan-2020 - 23-Jan-2022
KTP - Cambridge Quantum Computing (CQC)
McBride, Conor (Principal Investigator) Atkey, Bob (Co-investigator) Nordvall Forsberg, Fredrik (Co-investigator)
24-Jan-2020 - 23-Jan-2022
Trusted Systems
Ghani, Neil (Co-investigator) McBride, Conor (Principal Investigator) Nordvall Forsberg, Fredrik (Co-investigator)
01-Jan-2019 - 30-Jan-2023
Trusted Systems
Ghani, Neil (Principal Investigator) McBride, Conor (Co-investigator)
01-Jan-2019 - 30-Jan-2023
Homotopy Type Theory: Programming and Verification
Ghani, Neil (Principal Investigator) McBride, Conor (Co-investigator)
"The cost of software failure is truly staggering. Well known
individual cases include the Mars Climate Orbiter failure
(£80 million), Ariane Rocket disaster (£350 million), Pentium
Chip Division failure (£300 million), and more recently the heartbleed
bug (est. £400 million). There are many, many more examples. Even worse,
failures such as one in the Patriot Missile System and another
in the Therac-25 radiation system have cost lives. More generally, a
2008 study by the US government estimated that faulty
software costs the US economy £100 billion
annually.

There are many successful approaches to software verification
(testing, model checking etc). One approach is to find mathematical
proofs that guarantees of software correctness. However, the
complexity of modern software means that hand-written mathematical
proofs can be untrustworthy and this has led to a growing desire for
computer-checked proofs of software correctness.
Programming languages and interactive proof systems like Coq, Agda,
NuPRL and Idris have been developed based on a formal system called
Martin Type Theory. In these systems, we can not only write
programs, but we can also express properties of programs using types,
and write programs to express proofs that our programs are correct.
In this way, both large mathematical theorems such as the Four Colour
Theorem, and large software systems such as the CompCert C compiler
have been formally verified. However, in such large projects, the
issue of scalability arises: how can we use these systems to build large
libraries of verified software in an effective way?

This is related to the problem of reusability and modularity: a
component in a software system should be replaceable by another which
behaves the same way even though it may be constructed in a completely
different way. That is, we need an extensional equality which is
computationally well behaved (that is, we want to run programs using
this equality). Finding such an ty is a fundamental and
difficult problem which has remained unresolved for over 40 years.

But now it looks like we might have a solution! Fields medallist
Vladimir Voevodsky has come up with a completely different take on the
problem by thinking of equalities as paths such as those which occur
in one of the most abstract branches of mathematics, namely homotopy
theory, leading to Homotopy Type Theory (HoTT). In HoTT, two objects
are completely interchangeable if they behave the same way. However,
most presentations of HoTT involve axioms which lack computational
justification and, as a result, we do not have programming languages
or verification systems based upon HoTT. The goal of our project is
to fix that, thereby develop the first of a new breed of HoTT-based
programming languages and verification systems, and develop case
studies which demonstrate the power of HoTT to programmers and
those interested in formal verification.

We are an ideal team to undertake this research because i) we have
unique skills and ideas ranging from the foundations of HoTT to the
implementation and deployment of programming language and verification
tools; and ii) the active collaboration of the most important figures
in the area (including Voevodsky) as well as industrial participation
to ensure that we keep in mind our ultimate goal -- usable programming
language and verification tools."
01-Jan-2015 - 30-Jan-2019
CORCON (FP7 IRSES)
Ghani, Neil (Principal Investigator) Kupke, Clemens (Co-investigator) McBride, Conor (Co-investigator)
01-Jan-2014 - 31-Jan-2017

More projects

Address

Computer and Information Sciences
Livingstone Tower

Location Map

View University of Strathclyde in a larger map