Save this page
Save this page

My Saved Pages

  • Saved page.

My Saved Courses

  • Saved page.

Recently visited

  • Saved page.

Professor Sean McKee

Research Professor

Mathematics and Statistics


Modelling drug release from polymer-free coronary stents with microporous surfaces
Vo Tuoi T. N., Morgan Sarah, McCormick Christopher, McGinty Sean, McKee Sean, Meere Martin
International Journal of Pharmaceutics, pp. 1-36, (2017)
Squeeze-film flow between a curved impermeable bearing and a flat porous bed
Knox D. J., Duffy B. R., McKee S., Wilson S. K.
Physics of Fluids Vol 29, (2017)
Corrigendum to "Does anisotropy promote spatial uniformity of stent-delivered drug distribution in arterial tissue?" [Int. J. Heat Mass Transfer 90 (2015) 266-279]
McGinty Sean, Wheel Marcus, McKee Sean, McCormick Christopher
International Journal of Heat and Mass Transfer Vol 96, pp. 699-702, (2016)
Analytic solutions of a simple advection-diffusion model of an oxygen transfer device
McKee Sean, Dougall Ewan A., Mottram Nigel J.
Journal of Mathematics in Industry Vol 6, (2016)
Does anisotropy promote spatial uniformity of stent-delivered drug distribution in arterial tissue?
McGinty Sean, Wheel Marcus, McKee Sean, McCormick Christopher
International Journal of Heat and Mass Transfer Vol 90, pp. 266-279, (2015)
Boundary layers in pressure-driven flow in smectic A liquid crystals
Stewart I. W., Vynnycky M., McKee S., Tomé M. F.
SIAM Journal on Applied Mathematics Vol 75, pp. 1817-1851, (2015)

more publications

Professional activities

Member of the Editorial Board of Fasciculi Mathematici
Editorial board member
Journal of Mathematics in Industry (Journal)
Knowledge Transfer Network for Industrial Mathematics (External organisation)
University of Durham (External organisation)

more professional activities


Optimal Design of Vascular Stents
McCormick, Christopher (Co-investigator)
We anticipate that two key products will arise from our EPSRC research grant:

• A computational model to enable enhanced drug-eluting stent design for coronary heart disease.
• A prototype drug-eluting stent with fully optimised drug release kinetics

We envisage that both products will attract interest from industry and clinicians and will therefore be well placed to produce significant impact. We have been awarded support to develop the interactions with external partners necessary to deliver such impact.
Period 01-Oct-2012 - 30-Sep-2015
Medical Devices Doctoral Training Centre Renewal / RS3779
Connolly, Patricia (Principal Investigator) Buis, Adrianus (Co-investigator) Conway, Alastair (Co-investigator) Gourlay, Terry (Co-investigator) Grant, Mary (Co-investigator) Grealy, Madeleine (Co-investigator) Lakany, Heba (Co-investigator) Pratt, Judith (Co-investigator) Ulijn, Rein (Co-investigator) Ulijn, Rein (Co-investigator)
Period 01-Oct-2008 - 31-Mar-2018
Optimal design of drug-eluting stents
McCormick, Christopher (Research Co-investigator) Wheel, Marcus (Research Co-investigator)
3 year EPSRC funded project
Period 01-Apr-2012 - 31-Jul-2015
Optimal designs of drug eluting stents
McCormick, Christopher (Research Co-investigator)
"Coronary artery disease is the most common type of heart disease and the number one leading cause of death in Europe and North America. It is estimated to cost the public purse over £3.5 billion per annum in the UK alone. The disease arises from atherosclerosis, in which fatty deposits build up on the walls of the blood vessels (arteries) that supply the heart itself. These deposits can narrow the artery and reduce blood flow to the heart. This may lead to angina or a heart attack. Severely narrowed arteries are often treated by insertion of a stent which is an expandable metal meshwork tube that opens up the blocked artery. The performance of these stents is improved by covering them with a layer that gradually releases a drug to moderate the wound-healing reaction of the artery wall. Without the drug coating, many patients experience a growth of tissue around the stent that can narrow the artery again. The timing and extent of release of the drug from the stent into the artery wall is critical. If drug release is inadequate then tissue growth occurs and the artery becomes blocked; however if drug release is excessive then there is a problem for the repair of the important inner lining of the artery, called the endothelium. If there is endothelial damage this increases the risk of late thrombosis. Failure of endothelial regrowth is especially critical over the metal struts of the stent, where drug concentration is highest. Thus correct performance of the drug-eluting stent depends on accurate delivery of an effective, but non-toxic, drug profile. Drug-release profiles of currently available drug-eluting stents have been derived empirically; however the use of mathematical modelling principles will enable the design of improved release profiles and should lead to improved performance and fewer adverse effects. In this project we will develop a mathematical model that will be more realistic than previous models. It will be based more closely on the structure and composition of a diseased artery such as would be present in patients who are receiving a drug-eluting stent. Moreover our mathematical model will be more sophisticated than previous models because it will incorporate information about the errors associated with the various measurements that need to be made. We shall make accurate determinations, using the actual drugs that are used to treat patients, to find out how they move through the artery wall. We shall show that our model works correctly by measuring the performance of a stent that we have designed. The current project will utilise the best available methods to create a much more accurate and predictive model that, for the first time, will allow a stent to be designed with the assistance of a model and not solely empirically."
Period 01-Apr-2012 - 30-Sep-2015

more projects


Mathematics and Statistics
Livingstone Tower

Location Map

View University of Strathclyde in a larger map