
Professor Stephen Pierce
Electronic and Electrical Engineering
Area of Expertise
- Robotics and autonomous systems
- Non-destructive Testing and Evaluation (NDT&E)
- Ultrasonics
- Applied sensing/ instrumentation
- Machine learning/ pattern recognition
- Psychotherapy & Counselling
Prize And Awards
Qualifications
BSc (Hons) 1st Class, Pure and Applied Physics 1989, Department of Physics, University of Manchester Institute of Science & Technology, UMIST.
PhD,“Development of Fibre-Optic Interferometers for the Measurement Of Laser-Generated Ultrasound” 1993, Department of Instrumentation and Analytical Science (DIAS), UMIST.
City & Guilds 2381, Electrical Installations, Requirement for IEE Regulations (BS7671), July 2008
City & Guilds 2391, Inspection, Testing and Certification of Electrical Installations, July 2009
PGDip Psychological Wellbeing, Counselling & Psychotherapy, Nov 2021, University of Aberdeen
Publications
Research Interests
To address tomorrow’s technology challenges, it is essential to be building new research capability in the next generation robotics and automation platforms that typically employ a radical shift in human-machine interactions. Working closely with robotics manufacturers, integrators and supply chains is essential to turn underpinning advances in science, into new innovative products and services. In parallel to such industrial engagement, the development of new robot programming and sensor interfacing paradigms feeds directly into a contemporary framework for teaching and training with a range of education stakeholders (undergraduate, postgraduate, continued professional development). Measurement and instrumentation systems play a key role in enabling this capability, allowing sensory perception of the environment, and adaptive behaviour from automation systems allowing operation in unstructured and dynamic environments. Processing the data from such measurement systems demands new approaches in signal conditioning and interpretation, employing the latest developments in machine learning and artificial intelligence to provide real-time adaptive response to measurement data. A current focus for this framework of sensor enabled automation lies in materials and structural quality assurance, through non-destructive testing and evaluation (NDT&E), and structural health monitoring (SHM). These traditionally separate disciplines have moved closer over the past decade, allowing a more holistic approach to through life structure performance to be realised, from manufacture, through service-life operation, and finally through to decommissioning and remanufacture/ recycling.
My central research interest is in robotic and automated technologies for Non-Destructive Testing & Evaluation (NDT&E) - encompassing both traditional fixed industrial robotics, and mobile vehicle technologies (including UAVs) for applications in engineering inspection. Increasingly the automation of NDT is increasingly utilised in manufacturing, this includes ultrasonic, visual and electromagnetic testing. Modern additive manufacturing techniques in particular bring new challenges to both the measurement sensors employed, and real time deployment and feedback into manufacturing processes.
My research embraces the concepts of through-life asset management where the boundaries between NDT&E and conventional Structual Health and Condition Monitoring (SHM) are increasingly being broken down; so my research also covers wider aspects of structural integrity in sectors including aerospace, energy, oil and gas, nuclear and healthcare.
Positioning technologies have been identified as an obstacle to the effective uptake of robotic NDT technologies, and to this end I have initiated research into a fully probabilistic basis for the challenging problems involving robot location, data fusion between multiple sensors, and mapping problems. This naturally extends into work for full 3D metrology systems where my work is closely linked into metrology at NPL to understand how technology can be translated into the challenging manufacturing environment to support new automated systems working safely with humans.
The £37M SEARCH hub encompasses my inspection work across the manufacturing and asset management applications spaces, involving automation and robotics. My expertise in Non Destructive Evaluation (spanning 30 years) and in-process robotic inspection (>12 years) are key differentiators, allowing me to focus around Sensor Enabled Automation.
SEARCH comprises a laboratory in Royal College R2.41 which focusses on manufacturing applications (Composites Inspection, Metal Additive Manufacturing inspection, and In-Process Welding Inspection), and the Technology Innovation Centre TIC 7.14 focused on asset management applications (Crawler and UAV Inspection for Nuclear, Oil & Gas, Energy and Renewables).
Research activities in SEARCH fall between the 3 themes of:
- Physical Sensors (transduction/ measurement)
- Sensor Deployment (robotics)
- Data Interpretation (machine learning/ statistical methods)
http://search.eee.strath.ac.uk
Professional Activities
Projects
Contact
Professor
Stephen
Pierce
Electronic and Electrical Engineering
Email: s.g.pierce@strath.ac.uk
Tel: 548 2617