Professor John Quigley

Management Science

Personal statement

John is an Industrial Statistician with expertise in developing and applying statistical and stochastic methods to build decision support models. In particular, he has extensive experience in developing models for reliability growth analysis.  For example, with his colleague Professor Walls, they were actively leading activities in the DTI/aerospace industry funded project, Reliability Enhancement Methodology and Modelling (REMM) which was awarded the Simms Prize by the Royal Aeronautical Society.  He has been involved in consultancy and applied research projects for reliability growth with, for example, Aero-Engine Controls, Rolls Royce, Irving Aerospace, BAE SYSTEMS and the MOD. The model developed as part of the REMM project is included in the industry standard for reliability growth analysis methods, BS/IEC 61164 as well as contributing to the Strathclyde Business Schools impact cases for the Research Enhancement Framework.

Beyond defence, John has experience of developing decision support models for asset management for energy utilities (e.g. Scottish Power, SSE), water utilities (KTP with Scottish Water) and critical infrastructure (e.g. anchorage condition assessment of Forth Road Bridge).  Wider modelling has been in support of risk analysis (e.g. supplier risk analysis with Rolls Royce as part on a major ongoing EPSRC research project, risk of train derailments with Railway Safety and Standards Board). 

John has worked with the European Food Safety Agency (EFSA) training staff for elicitation and quantification of expert uncertainty as well as leading the COST Working Group on Processes and Procedures for eliciting expert judgment.  The COST project resulted in the book Elicitation: The Science and Art of Structuring Judgement.

John is an Associate of the Society of Actuaries, a Chartered Statistician, and a member of the Safety and Reliability Society.  He has a Bachelor of Mathematics in Actuarial Science from the University of Waterloo, Canada and a PhD in Management Science from the University of Strathclyde. 


A probabilistic design reuse index for engineering designs
Vasantha Gokula, Corney Jonathan, Stuart Struan, Sherlock Andrew, Quigley John, Purves David
Journal of Mechanical Design Vol 142 (2020)
Mapping conditional scenarios for knowledge structuring in (tail) dependence elicitation
Werner Christoph, Bedford Tim, Quigley John
Journal of Operational Research Society (2019)
Quantifying the benefit of SHM : can the VoI be negative?
Verzobio Andrea, Bolognani Denise, Zonta Daniele, Quigley John
13th Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019 Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019 (2019)
Rationalising the use of Twitter by official organisations during risk events : operationalising the social amplification of risk framework through causal loop diagrams
Comrie EL, Burns C, Coulson AB, Quigley J, Quigley KF
European Journal of Operational Research Vol 272, pp. 792-801 (2019)
IWSHM 2017 : Quantifying the benefit of structural health monitoring : what if the manager is not the owner?
Bolognani Denise, Verzobio Andrea, Tonelli Daniel, Cappello Carlo, Glisic Branko, Zonta Daniele, Quigley John
Structural Health Monitoring Vol 17, pp. 1393-1409 (2018)
A probabilistic design reuse index
Vasantha Gokula, Sherlock Andrew, Corney Jonathan, Quigley John
ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2018) (2018)

More publications


John provides specialist teaching for a number of programmes at various levels.  These have included teaching Management Science at all levels of undergraduate and postgraduate as well as Executive Education.  The postgraduate programmes for which he teaches include MSc in Operational Research and Business Analysis & Consulting as well as MBA.  Together with Professor Scholarios from the department of Human Resouce Management, he developed the Research Methods training module for all research students in the Strathclyde Business School.  John has taught in 10 different international centres across Europe, the Middle East and South East Asia, as well as Executive Education in Canada. 


John is committed to making effective use of technology to support teaching and learning.  He has been involved in managing, developing and teaching on pedagogically successful online and distance courses, as well as investigating the effectiveness of using virtual reality environments to support teaching.    

Professional activities

Workshops on Mathematical Methods in Reliability
Risk Governance
Selex Gallileo
Visiting researcher
International Conference on Reliability
Keynote/plenary speaker
Consultancy with Doosan Babcock Power Systems
Canada School Contribution Agreement - Foundations of Risk
To be assigned

More professional activities


Development of a decision support system for the management of infrastructure
Tubaldi, Enrico (Principal Investigator) Patelli, Edoardo (Co-investigator) Quigley, John (Co-investigator)
06-Jan-2020 - 05-Jan-2022
Global Environmental Monitoring and Policy (GEMaP) Centre for Doctoral Training: Quantifying the risks and impacts of climate change on water resources in Scotland.
Peters, Joshua (Principal Investigator) Roberts, Jen (Principal Investigator) Quigley, John (Co-investigator)
This is an exciting opportunity to engage in international research to reduce risks of climate change on water resources. The studentship will be developing innovative decision-making techniques as well as identifying potential policy interventions to enhance actions to mitigate and adapt to climate change, or to reduce the impacts of climate change.
Towards Game-changer Service Operation Vessels for Offshore Windfarms (NEXUS) H2020-BG-2016-2017
Vassalos, Dracos (Principal Investigator) Bedford, Tim (Co-investigator) Boulougouris, Evangelos (Co-investigator) Bujorianu, Luminita (Co-investigator) Lazakis, Iraklis (Co-investigator) McMillan, David (Co-investigator) Puisa, Romanas (Co-investigator) Quigley, John (Co-investigator) Revie, Matthew (Co-investigator) Theotokatos, Gerasimos (Co-investigator) Walls, Lesley (Co-investigator)
01-Jan-2017 - 31-Jan-2020
TIC LCPE Repowering Hydro Plants - a Decision Support Tool
Walls, Lesley (Principal Investigator) Howick, Susan (Co-investigator) Quigley, John (Co-investigator) Revie, Matthew (Co-investigator)
01-Jan-2017 - 31-Jan-2018
ERDF Atlantic Area Programme 2014-2020 IN. 4.0 Project
Ates, Aylin (Co-investigator) Sminia, Harry (Co-investigator) Walls, Lesley (Co-investigator) Quigley, John (Co-investigator)
01-Jan-2017 - 31-Jan-2020
Design the Future 2: Enabling Design Re-use through Predictive CAD
Corney, Jonathan (Principal Investigator) Quigley, John (Co-investigator)
"Engineering Design work typically consists of reusing, configuring, and assembling of existing components, solutions and knowledge. It has been suggested that more than 75% of design activity comprises reuse of previously existing knowledge.

However in spite of the importance of design reuse activities researchers have estimated that 69% of companies have no systematic approaches to preventing the reinvention of the wheel. The major issue for supporting design re-use is providing solutions that partially re-use previous designs to satisfy new requirements. Although 3D Search technologies that aim to create a Google for 3D shapes have been increasing in capability and speed for over a decade they have not found widespread application and have been referred to as a solution looking for a problem! This project is motivated by the belief that, with a new type of user interface, 3D search could be the solutions to the design reuse problem.

The system this research is aiming to produce is analogous to the text message systems of mobile phones. On mobile phones 'Predictive text' systems complete words or phrases by matching fragments against dictionaries or phrases used in previous messages. Similarly a 'predictive CAD' system would complete 3D models using 'shape search' technology to interactively match partial CAD features against component databases. In this way the system would prompt the users with fragments of 3D components that complete, or extend, geometry added by the user. Such a system could potential increase design productivity by making the reuse of established designs an efficient part of engineering design.

Although feature based retrieval of components from databases of 3D components has been demonstrated by many researchers so far the systems reported have been relatively slow and unable to be components of an interactive design system. However recent breakthroughs in sub-graph matching algorithms have enabled the emergence of a new generation of shape retrieval algorithms, which coupled with multi-core hardware, are now fast enough to support interactive, predictive design interfaces. This proposal aims to investigate the hypothesis that a Predictive CAD system would allow engineers to more effectively design new components that incorporate established, or standard, functional or manufacturing geometries. This would find commercial applications within large or distributed engineering organizations.

This project is an example of how data mining could potentially be employed to increase design productivity because even small engineering companies will have many hundreds of megabytes of CAD data that a Predictive CAD system would effectively pattern match against."
01-Jan-2017 - 30-Jan-2020

More projects