Dr Marc Roper


Computer and Information Sciences

Personal statement

I have an extensive background in software engineering research, particularly in understanding and addressing the significant problems associated with designing, testing, and evolving large software systems. Much of his research has incorporated significant empirical investigations: either based around controlled participant-based experiments or through the the analysis of open-source systems and large-scale repositories. I have explored widely the application of search-based strategies and machine learning techniques (anomaly detection in particular) to software engineering problems such as test data generation and automatic fault detection, and also investigated the application of artificial immune systems to security problem. 

More recently my research interests have expanded to explore how valuable information can be collected through passively collecting, crowdsourcing and analysing smartphone sensor data.


Has expertise in:

    • Software Engineering (particularly design, testing and debugging)
    • Conducting empirical studies of software engineering techniques and processes
    • Search-based software engineering
    • Software analytics (static analysis, dynamic analysis and repository mining)


Text entry tap accuracy and exploration of tilt controlled layered interaction on smartwatches
Dunlop Mark D, Roper Marc, Imperatore Gennaro
MobileHCI '17, (2017)
Automatically classifying test results by semi-supervised learning
Almaghairbe Rafig, Roper Marc
2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), pp. 116-126, (2016)
Separating passing and failing test executions by clustering anomalies
Almaghairbe Rafig, Roper Marc
Software Quality Journal, pp. 1-38, (2016)
Using smartphones in cities to crowdsource dangerous road sections and give effective in-car warnings
Dunlop Mark D, Roper Marc, Elliott Mark, McCartan Rebecca, McGregor Bruce
Proceedings of the SEACHI 2016 on Smart Cities for Better Living with HCI and UX, pp. 14-18, (2016)
Building test oracles by clustering failures
Almaghairbe Rafig , Roper Marc
2015 IEEE/ACM 10th International Workshop on Automation of Software Test (AST), pp. 3-7, (2015)
What's in a bug report?
Davies Steven, Roper Marc
IEEE International Symposium on Empirical Software Engineering and Measurement, (2014)

more publications


Over my career I have taught a lare range of classes, from 1st year undergraduate to postgraduate, mainly on areas related to programming, software engineering and software design.

My main current teaching responsibilities are:

I am also responsible for overseeing the MEng final year group project:

and look after the industrial placements for those on the BSc (Hons.) Software Engineering and MEng Computer Science degrees:

  • CS415 Industrial Placement (Software Engineering) [syllabus]
  • CS416 Industrial Placement 1 (MEng Computer Science) [syllabus]
  • CS552 Industrial Placement 2 (MEng Computer Science) [syllabus]

Additionally I am the primary contact for any research or undergraduate students wishing to carry out studies which require ethical approval.

Research interests

  • Software engineering
  • Mobile computing

Professional activities

ESEM 2011: 5th International Symposium on Empirical Software Engineering and Measurement
Member of programme committee
Testing: Academic and Industrial Conference - Practice And Research Techniques (TAICPART)
Software Testing, Verification and Reliability (Journal)
Editorial board member
Information and Software Technology (Journal)
Editorial board member

more professional activities


Quantitative non-destructive nanoscale characterisation of advanced materials
Hourahine, Benjamin (Principal Investigator) Edwards, Paul (Co-investigator) Roper, Richard (Co-investigator) Trager-Cowan, Carol (Co-investigator) Gunasekar, Naresh (Researcher)
"To satisfy the performance requirements for near term developments in electronic and optoelectronic devices will require pioneering materials growth, device fabrication and advances in characterisation techniques. The imminent arrival of devices a few atoms thick that are based on lighter materials such as graphene or boron nitride and also advanced silicon and diamond nano-structures. These devices pose new challenges to the currently available techniques for producing and understanding the resulting devices and how they fail. Optimising the performance of such devices will require a detailed understanding of extended structural defects and their influence on the properties of technologically relevant materials. These defects include threading dislocations and grain boundaries, and are often electrically active and so are strongly detrimental to the efficiency and lifetimes of nano-scale devices (a single badly-behaved defect can cause catastrophic device failure). These defects are especially problematic for devices such as silicon solar cells, advanced ultraviolet light emitting diodes, and advanced silicon carbide and gallium nitride based high power devices (used for efficient switching of large electrical currents or for high power microwave telecoms). For graphene and similar modern 2D materials, grain boundaries have significant impact on their properties as they easily span the whole size of devices. Resolving all of these problems requires new characterisation techniques for imaging of extended defects which are simultaneously rapid to use, are non-destructive and are structurally definitive on the nanoscale. Electron channelling contrast imaging (ECCI) is an effective structural characterisation tool which allows rapid non-destructive visualisation of extended crystal defects in the scanning electron microscope. However ECCI is usually applied as a qualitative method of investigating nano-scale materials, has limitations on the smallest size features that it can resolve, and suffers from difficulties in interpreting the resulting images. This limits this technique's ability to work out the nature of defects in these advanced materials. We will make use of new developments in energy resolving electron detectors, new advances in the modelling of electron beams with solids and the knowledge and experience of our research team and partners, to obtain a 6 fold improvement in the spatial resolution of the ECCI technique. This new energy-filtered way of making ECCI measurements will radically improve the quality of the information that can be obtained with this technique. We will couple our new capabilities to accurately measure and interpret images of defects to other advanced characterisation techniques. This will enable ECCI to be adopted as the technique of choice for non-destructive quantitative structural characterisation of defects in a wide range of important materials and provide a new technique to analyse the role of extended defects in electronic device failure."
Period 01-Jun-2017 - 30-Nov-2020
Structural Comparison of Labelled Graph Data | Moss, Robert George
Connor, Richard (Principal Investigator) Roper, Richard (Co-investigator) Moss, Robert George (Research Co-investigator)
Period 01-Jul-2011 - 01-Jul-2014
Doctoral Training Grant 2010 | Davies, Steven
Roper, Richard (Principal Investigator) Wood, Murray (Co-investigator) Davies, Steven (Research Co-investigator)
Period 01-Oct-2010 - 13-Oct-2014
A proposal to support TAIC PART 2008
Roper, Richard (Principal Investigator)
This proposal was to support the TAIC PART conference - Testing: Academic & Industrial Conference: Practice and Research Techniques The key aim of this conference was to bring together participants from academia and industry working on problems of software testing. The support was requested in order to pump-prime the conference to allow it become established by providing a level of subsidy for participants and supporting invited speakers.
Period 26-Aug-2008 - 31-Dec-2008

more projects


Computer and Information Sciences
Livingstone Tower

Location Map

View University of Strathclyde in a larger map