Save this page
Save this page

My Saved Pages

  • Saved page.

My Saved Courses

  • Saved page.
Reset

Recently visited

  • Saved page.

Dr Mark Wiggins

Senior Research Fellow

Physics

Publications

An ultra-high gain and efficient amplifier based on Raman amplification in plasma
Vieux G., Cipiccia S., Grant D. W., Lemos N., Grant P., Ciocarlan C., Ersfeld B., Hur M. S., Lepipas P., Manahan G. G., Raj G., Reboredo Gil D., Subiel A., Welsh G. H., Wiggins S. M., Yoffe S. R., Farmer J. P., Aniculaesei C., Brunetti E., Yang X., Heathcote R., Nersisyan G., Lewis C. L. S., Pukhov A., Dias J. M., Jaroszynski D. A.
Scientific Reports Vol 7, pp. 1-10, (2017)
http://dx.doi.org/10.1038/s41598-017-01783-4
Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy
Kokurewicz K., Welsh G. H., Brunetti E., Wiggins S. M., Boyd M., Sorensen A., Chalmers A., Schettino G., Subiel A., DesRosiers C., Jaroszynski D. A.
Proceedings of SPIE 7982, Smart Sensor Phenomena, Technology, Networks, and Systems 2011 Vol 10239, (2017)
http://dx.doi.org/10.1117/12.2271183
Wide-angle electron beams from laser-wakefield accelerators
Brunetti E., Yang X., Li F.Y., Reboredo Gil D., Welsh G.H., Cipiccia S., Ersfeld B., Grant D.W., Grant P.A., Islam M.R., Shahzad M., Tooley M.P., Vieux G., Wiggins S.M., Sheng Z.M., Jaroszynski D.A.
Proceedings of SPIE 7982, Smart Sensor Phenomena, Technology, Networks, and Systems 2011 Vol 10240, pp. 102400P-102400P-12, (2017)
http://dx.doi.org/10.1117/12.2269314
Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question
Yang X., Brunetti E., Reboredo Gil D., Welsh G.H., Li F.Y., Cipiccia S., Ersfeld B., Grant D.W., Grant P.A., Islam M.R., Tooley M.P., Vieux G., Wiggins S.M., Sheng Z.M., Jaroszynski D.A.
Scientific Reports Vol 7, (2017)
http://dx.doi.org/10.1038/srep43910
Laser-plasma-based space radiation reproduction in the laboratory
Hidding B., Karger O., Königstein T., Pretzler G., Manahan G. G., McKenna P., Gray R., Wilson R., Wiggins S. M., Welsh G. H., Beaton A., Delinikolas P., Jaroszynski D. A., Rosenzweig J. B., Karmakar A., Ferlet-Cavrois V., Constantino A., Muschitiello M., Daly E.
Scientific Reports Vol 7, (2017)
http://dx.doi.org/10.1038/srep42354
Near-threshold electron injection in the laser-plasma wakefield accelerator leading to femtosecond bunches
Islam M R, Brunetti E, Shanks R P, Ersfeld B, Issac R C, Cipiccia S, Anania M P, Welsh G H, Wiggins S M, Noble A, Cairns R A, Raj G, Jaroszynski D A
New Journal of Physics Vol 17, (2015)
http://dx.doi.org/10.1088/1367-2630/17/9/093033

more publications

Research interests

I am the Centre Manager for SCAPA - the Scottish Centre for the Application of Plasma-based Accelerators - which means I oversee research that deals with laser-based accelerators and associated radiation sources. The accelerators entail focusing high-power femtosecond laser pulses onto gas/plasma/solid targets for extremely compact acceleration of electron/proton/ion beams to high energy. Very bright X-ray and gamma-ray pulses are also generated. Techniques to optimise and tailor the output characteristics are investigated as well as the basic physical processes themselves. Paramount to SCAPA of course is application development of these particle and radiation sources for the scientific, industrial and medical communities.

Professional activities

University Open Day - Department of Physics student recruiting
Participant
5/9/2017
SCAPA Management Executive Committee Meeting (Event)
Chair
21/6/2017
Strath Wide Researcher Conference 2017
Participant
30/5/2017
SUPA Annual Gathering 2017
Participant
10/5/2017
EuCARD2 Annual Meeting
Participant
28/3/2017
SCAPA Management Executive Committee Meeting (Event)
Chair
27/3/2017

more professional activities

Projects

HARNESSING LASER-DRIVEN PLASMA WAVES AS PARTICLE AND RADIATION SOURCES | Grant, David William
Jaroszynski, Dino (Principal Investigator) Wiggins, Samuel (Co-investigator) Grant, David William (Research Co-investigator)
Period 01-Oct-2010 - 01-Apr-2014
HARNESSING LASER-DRIVEN PLASMA WAVES AS PARTICLE AND RADIATION SOURCES | Anania, Maria Pia
Jaroszynski, Dino (Principal Investigator) Wiggins, Samuel (Co-investigator) Anania, Maria Pia (Research Co-investigator)
Period 01-Oct-2007 - 17-Jun-2015
Doctoral Training Grant 2006 | Shanks, Richard
Jaroszynski, Dino (Principal Investigator) Wiggins, Samuel (Co-investigator) Shanks, Richard (Research Co-investigator)
Period 01-Oct-2006 - 12-Jun-2012
Lab in a bubble
Jaroszynski, Dino (Principal Investigator) Boyd, Marie (Co-investigator) Brunetti, Enrico (Co-investigator) Ersfeld, Bernhard (Co-investigator) Hidding, Bernhard (Co-investigator) McKenna, Paul (Co-investigator) Noble, Adam (Co-investigator) Sheng, Zheng-Ming (Co-investigator) Vieux, Gregory (Co-investigator) Welsh, Gregor (Co-investigator) Wiggins, Samuel (Co-investigator)
"The lab in a bubble project is a timely investigation of the interaction of charged particles with radiation inside and in the vicinity of relativistic plasma bubbles created by intense ultra-short laser pulses propagating in plasma. It builds on recent studies carried out by the ALPHA-X team of coherent X-ray radiation from the laser-plasma wakefield accelerator and high field effects where radiation reaction becomes important. The experimental programme will be carried out using high power lasers and investigate new areas of physics where single-particle and collective radiation reaction and quantum effects become important, and where non-linear coupling and instabilities between beams, laser, plasma and induced fields develop, which result in radiation and particle beams with unique properties. Laser-plasma interactions are central to all problems studied and understanding their complex and often highly non-linear interactions gives a way of controlling the bubble and beams therein. To investigate the rich range of physical processes, advanced theoretical and experimental methods will be applied and advantage will be taken of know-how and techniques developed by the teams. New analytical and numerical methods will be developed to enable planning and interpreting results from experiments. Advanced experimental methods and diagnostics will be developed to probe the bubble and characterise the beams and radiation. An important objective will be to apply the radiation and beams in selected proof-of-concept applications to the benefit of society.
The project is involves a large group of Collaborators and Partners, who will contribute to both theoretical and experimental work. The diverse programme is managed through a synergistic approach where there is strong linkage between work-packages, and both theoretical and experiential methodologies are applied bilaterally: experiments are informed by theory at planning and data interpretation stages, and theory is steered by the outcome of experimental studies, which results in a virtuous circle that advances understanding of the physics inside and outside the lab in a bubble. We also expect to make major advances in high field physics and the development of a new generation of compact coherent X-ray sources."
Period 01-Apr-2016 - 31-Mar-2020
Critical Mass: Collective radiation-beam-plasma interactions at high intensities
Jaroszynski, Dino (Principal Investigator) Bingham, Robert (Co-investigator) Boyd, Marie (Co-investigator) Ledingham, Kenneth (Co-investigator) McKenna, Paul (Co-investigator) Wiggins, Samuel (Co-investigator)
This proposal describes a programme of research on single-particle and collective radiation-beam-plasma interactions at high field intensities, production of high-brightness particle beams with femtosecond to attosecond duration, new sources of coherent and incoherent radiation that are both compact and inexpensive, new methods of accelerating particles which could make them widely available and, by extending their parameter range, stimulate new application areas. An important adjunct to the proposal will be a programme to apply the sources to demonstrate their usefulness and also provide a way to involve industry and other end-users. The project builds on previous experiments and theoretical investigations of the Advanced Laser Plasma High-energy Accelerators towards X-rays (ALPHA-X) project, which has demonstrated controlled acceleration in a laser-plasma wakefield accelerator (LWFA), initial applications of beams from the LWFA and demonstrations of gamma ray production due to resonant betatron motion in the LWFA. The programme will have broad relevance, through developing an understanding of the highly nonlinear and collective physics of radiation-matter interactions, to fields ranging from astrophysics, fusion and nuclear physics, to the interaction of radiation with biological matter. It will also touch on several basic problems in physics, such as radiation reaction in plasma media and the development of coherence in nonlinear coupled systems.
Period 19-Apr-2012 - 18-Jan-2016

more projects