Postgraduate research opportunities Computational design of bio-inspired silica materials for carbon capture

Apply

Key facts

  • Opens: Wednesday 17 February 2021
  • Number of places: One
  • Duration: 3.5 years

Overview

This project aims to develop a new multi-scale simulation model to describe the entire synthesis process of bio-inspired silica materials. The model will then be used to design an ideal material for carbon capture applications.
Back to opportunity

Eligibility

Students applying should have (or expect to achieve) a minimum 2.1 undergraduate degree in a relevant engineering/science discipline, and be highly motivated to undertake multidisciplinary research.

THE Awards 2019: UK University of the Year Winner
Back to opportunity

Project Details

Materials that are porous at the nanoscale are used in a wide variety of applications, like gas separation, carbon capture, catalysis and drug delivery. Such applications benefit from the strong gas-surface interactions present in very small pores, which control, for example, equilibrium selectivity in adsorption applications. Unfortunately, the vast majority of these materials are synthesised under harsh conditions (e.g. high pH, temperature, pressure) using toxic chemicals. Recently, a new approach to synthesised nanoporous silicas has emerged, inspired by the natural process of biosilicification. This approach can produce silicas with significant porosity under environmentally friendly conditions [1]. However, the main challenge preventing the widespread use of these novel materials is a lack of understanding of their synthesis process. This project aims to overcome that challenge by developing a computational model that can predict the properties of bio-inspired silica materials during their synthesis process. The model will then be used to design bio-inspired silicas with the ideal characteristics to capture carbon dioxide from flue gas streams.

To understand and control the synthesis process of bio-inspired silica, and thus be able to predict their performance in carbon capture applications, requires the use of multi-scale modelling techniques that are able to connect the different length scales of the process (from small molecular precursors to a large three-dimensional porous framework) over the necessary time scales (from chemical reactions to mesostructure self-assembly). This project will build upon a recently developed approach in the Jorge group that is able to simulate the formation of periodic mesoporous silica materials from solution [2-4], extending it to the design of bio-inspired silica materials. The idea is to develop coarse-grained mesoscale models of the synthesis solution from higher-level quantum chemistry and atomistic simulations, then apply them to predict the structure of the porous material at different synthesis conditions. The project will be run in close collaboration with experimental researchers engaged in bio-inspired silica synthesis, and will suit a highly motivated, creative and independent student, preferably with experience in the use of computational modelling methods.

The work will benefit from access to the Archie-West supercomputer (http://www.archie-west.ac.uk), and from the vibrant modelling community at Strathclyde’s Chemical and Process Engineering Department. The student will work collaboratively with leading research groups, nationally and internationally, involved in the experimental synthesis of porous materials and in materials modelling.

In addition to undertaking cutting edge research, students are also registered for the Postgraduate Certificate in Researcher Development (PGCert), which is a supplementary qualification that develops a student’s skills, networks and career prospects.

Further information

References

[1] Patwardhan, S.V.  “Biomimetic and bioinspired silica: recent developments and applications” Chem. Commun., 2011, 47, 7567.

[2] Jorge, M.; Gomes, J. R. B.; Cordeiro, M. N. D. S.; Seaton, N. A. “Molecular Simulation of Silica/Surfactant Self-assembly in the Synthesis of Periodic Mesoporous Silicas”, J. Am. Chem. Soc., 2007, 129, 15414.

[3] Pérez-Sánchez, G.; Gomes, J. R. B.; Jorge, M. “Modeling Self-Assembly of Silica/Surfactant Mesostructures in the Templated Synthesis of Nanoporous Solids”, Langmuir, 2013, 29, 2387.

[4] Centi. A.; Manning, J. R. H.; Srivastava, V.; van Meurs, S.; Patwardhan, S. V.; Jorge, M. “The Role of Charge-Matching in Nanoporous Materials Formation”, Mater. Horiz. 2019, 6, 1027-1033

Back to opportunity

Funding details

This PhD project is initially offered on a self-funding basis. It is open to applicants with their own funding, or those applying to funding sources. However, excellent candidates will be eligible to be considered for a University scholarship.

Back to opportunity

Supervisors

Dr Miguel Jorge

Senior Lecturer
Chemical and Process Engineering

View profile
Back to course

Apply

During the application you'll be asked for the following information and evidence uploaded to the application:

  • your full contact details
  • transcripts and certificates of all degrees
  • proof of English language proficiency if you are not from a majority English-speaking country as recognised by UKVI
  • two references, one of which must be academic. Please see our guidance on referees
  • funding or scholarship information
  • international students must declare any previous UK study

By filling these details out as fully as possible, you'll avoid any delay to your application being processed by the University.

Useful resources

Start date: Oct 2021 - Sep 2022

Chemical and Process Engineering

PhD
full-time
Start date: Oct 2021 - Sep 2022

Start date: Oct 2022 - Sep 2023

Chemical and Process Engineering

PhD
full-time
Start date: Oct 2022 - Sep 2023

Back to course

Contact us

chemeng-pg-admissions@strath.ac.uk

James Weir Building, 75 Montrose Street, Glasgow, G1 1XJ