MSc Biomedical Engineering
ApplyKey facts
- Start date: January & September
- Accreditation: Institute of Physics and Engineering in Medicine (IPEM)
- Study mode and duration: MSc: 12 months full-time or 24 months part-time (depending on entry qualifications)
Ranking: No 2 in the UK for Medical Technology – Complete University Guide 2021
Study with us
- modular conversion course which provides broad training in biomedical engineering to help you progress with a career in research, industry or in the NHS
- contribute to solutions for clinically-relevant problems
- explore advances in technology and engineering to generate applications and solutions to clinically relevant problems
How could the Covid-19 pandemic affect my studies?
Covid-19: information & FAQsWhy this course?
Studying an MSc in Biomedical Engineering at the University of Strathclyde, you'll be learning at a multi-award-winning academic institution. A 5-star QS-rated university, we were are also ranked 2nd in the UK for Medical Technology in the Complete University Guide Subject Tables 2021.
The postgraduate taught Masters degree is a modular conversion course which provides broad training in biomedical engineering to help you progress with a career in research, industry or in the NHS.
We bring together engineering, medicine and the life and physical sciences to enable the development of relevant clinical and industrial research.
The programme explores advances in technology and engineering to generate applications and solutions to clinically relevant problems.
As part of the course, you’ll go on visits to local clinical centres and attend lectures from industrialists and visiting experts from the UK and overseas. You’ll also have the opportunity to meet our many industrial and clinical partners to help advise and further your career.

Learning & teaching
Instructional classes include:
- lectures
- laboratory demonstrations
- practical exercises
- clinical visits
You’ll also have the opportunity to visit local clinical centres and attend seminars given by visiting experts from the UK and overseas.
Assessment
This credit-based modular degree comprises assessed instructional modules and project work.
Life in the Department of Biomedical Engineering
Find out more about how we're transforming and improving future healthcare through innovations and advances in science and technology.
Course content
A typical selection of classes offered on the programme are outlined below. Please note that these classes may be subject to change.
180 credits are required for a Masters degree.
Medical Science for Engineering
You'll be provided with instruction in key areas of human anatomy, physiology and cell biology relevant to the advanced study of bio and clinical engineering. You'll gain an understanding of normal biological function and control as derived from scientific and clinical evidence.
The class aims to educate you to use your knowledge of normal function to better understand pathology, disease diagnosis and treatment.
or
Engineering Science
Professional studies in Biomedical Engineering
This class aims to:
- provide an introduction to the philosophy, ethics and methodology of research
- outline the role that the bioengineer plays in the solution of clinical problems
- provide training in the principles, assessment and application of safety procedures in areas relevant to medical physics and biomedical engineering
- engender an awareness of the importance of regulatory issues in medical device design and manufacturing
Research Methodology
Biomedical Electronics
This class aims to give the student a thorough introduction to the use of electronic circuits for the pre-conditioning, acquisition and display of biomedical signals and to provide an understanding of the components required in a basic biomedical measurement device.
Biomedical Instrumentation
This class aims to give a detailed description of the principles and applications of a number of the most widely used biomedical instrumentation systems and devices found in the modern hospital environment.
This course will enable students to understand the diagnostic and research applications of the various instrumentation-related techniques currently available and to appreciate their limitations.
Choose 6 from the list for an MSc.
Introduction to Biomechanics
This class aims to provide you with a tool set of analytical skills to enable you to undertake valid biomechanical analyses of human movement. This includes the science, engineering and mathematical skill to produce kinematic and kinetic analyses of human movement and the external and internal load actions experienced by humans during activity. The class will provide generic analysis skills but examples will focus primarily on human gait.
Prosthetics & Orthotics
This class aims to demonstrate to you how biomechanical principles can be applied to the design, manufacture, fitting procedures and evaluation of prostheses, orthoses and other devices externally applied to the body of patients in need of rehabilitation.
It is hoped that you should be able to join manufacturing companies, research groups or clinical teams responsible for the delivery of such systems.
Regenerative Medicine
You'll learn to describe the developments and advances in regenerative/repair medicine in terms of
- Source of cells
- Cell expansion/seeding and bioreactor technology
- Tissue scaffolds: design criteria, fabrication and characterisation
- Clinical status of replacement tissues and organs
Tissues mechanics
Clinical & Sports Biomechanics
This class aims to provide you with the ability to appraise the role of biomechanics and biomechanical measurement techniques in the development and evaluation of clinical practice in rehabilitation and in the production and management of sports injuries. The class will also allow you to assess the role of biomechanics and biomechanical measurement in the improvement of human function and the optimising of sports performance. The class will focus on orthopaedic and neurological issues.
Anatomy & Physiology
(for students taking Engineering Science but who do not have the prerequisite background in Anatomy & Physiology)
This class aims to provide you with the basic knowledge of the anatomical structure of the major body systems, together with an understanding of their physiological functioning. This knowledge is fundamental to understand and to develop specific topics that will be taught later in the course.
Biosignal Processing & Analysis
This class aims to familiarise students with the fundamentals and concepts of signals and systems (both continuous-time and discrete-time), and to develop a framework for processing and analysing a variety of biomedical signals and images (biosignals), including electrocardiograms (ECGs) and magnetic resonance images.
You'll also develop valuable Mathcad and MATLAB signal/image processing skills, through non-compulsory self-study laboratory exercises.
Biomaterials & Biocompatibility
This class aims to:
- provide fundamental information on the properties of synthetic biomaterials, and how these are evaluated experimentally and from the literature
- outline how material properties are influenced by methods of processing
- explore with the aid of appropriate examples what is meant by biocompatibility; provide an overview of the host responses to and interactions with biomaterials, and how these interactions are assessed and influenced by surface properties
- introduce the principles of toxicology, identify the major toxic interactions with foreign chemicals and the protective mechanisms which enable us to survive most toxic insults. Assessment of the safety of materials according to the International Standards will be discussed
Cardiovascular Devices
This class aims to:
- give students a broad overview of cardiovascular devices used in the clinical setting for the treatment of a range of clinical conditions
- demonstrate and develop an understanding of the clinical, design and regulatory challenges involved in developing devices for this clinical sector
- offer some insight into the pathologies underlying the need for cardiovascular device technologies
MSc Project
This class aims to provide an opportunity for you to experience the challenges and rewards of sustained, independent study in a topic of their own choice in the general field of Biomedical Engineering.
It will involve you in a number of processes which include:
- justification of the selected topic
- selecting, devising and applying appropriate methods and techniques
- anticipating and solving problems which arise
- displaying knowledge of background literature
- evaluating and reporting the conclusions of the study
The project may take the form of an extended literature review or involve experimental work. This project work will have been supported by a compulsory research methods module and specialist knowledge classes throughout the year designed to assist with technical aspects of methodology and analysis.
Entry requirements
Academic requirements | Normally a first-class or second-class honours degree (or international equivalent) in engineering, physical science, life science, medicine, or a profession allied to medicine For candidates with other qualifications, or who may benefit from a longer period of study, the MSc can be undertaken over 24 months. |
---|
Pre-Masters preparation course
The Pre-Masters Programme is a preparation course held at the University of Strathclyde International Study Centre, for international students (non EU/UK) who do not meet the academic entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
Upon successful completion, you will be able to progress to this degree course at the University of Strathclyde.
International students
We've a thriving international community with students coming here to study from over 100 countries across the world. Find out all you need to know about studying in Glasgow at Strathclyde and hear from students about their experiences.
Visit our international students' sectionFees & funding
All fees quoted are for full-time courses and per academic year unless stated otherwise.
Scotland | £8,100 |
---|---|
England, Wales & Northern Ireland | £9,250 |
International | £21,500 |
Additional costs |
Total: £135 |
Available scholarships | Take a look at our scholarships search for funding opportunities. |
Please note: the fees shown are annual and may be subject to an increase each year. Find out more about fees.
Fees & funding
All fees quoted are for full-time courses and per academic year unless stated otherwise.
Scotland | £8,850 |
---|---|
England, Wales & Northern Ireland | £9,250 |
International | £22,500 |
Additional costs |
Total: £135 |
Available scholarships | Take a look at our scholarships search for funding opportunities. |
Please note: the fees shown are annual and may be subject to an increase each year. Find out more about fees.
How can I fund my course?
Scottish postgraduate students
Scottish postgraduate students may be able to apply for support from the Student Awards Agency Scotland (SAAS). The support is in the form of a tuition fee loan and for eligible students, a living cost loan. Find out more about the support and how to apply.
Don’t forget to check our scholarship search for more help with fees and funding.
Students coming from England
Students ordinarily resident in England may be to apply for postgraduate support from Student Finance England. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.
Don’t forget to check our scholarship search for more help with fees and funding.
Students coming from Wales
Students ordinarily resident in Wales may be to apply for postgraduate support from Student Finance Wales. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.
Don’t forget to check our scholarship search for more help with fees and funding.
Students coming from Northern Ireland
Postgraduate students who are ordinarily resident in Northern Ireland may be able to apply for support from Student Finance Northern Ireland. The support is a tuition fee loan of up to £5,500. Find out more about the support and how to apply.
Don’t forget to check our scholarship search for more help with fees and funding.
International students
We've a large range of scholarships available to help you fund your studies. Check our scholarship search for more help with fees and funding.
Faculty of Engineering Scholarships for International Students
If you're applying one of our January 2021 intake MSc courses you'll be eligible to apply for one of our Faculty of Engineering International Scholarships worth up to £5,000 towards your tuition fees.
All self-funded, international (non-EU) fee-paying offer holders with strong academic qualifications are encouraged to apply. Please note you must have an offer of study for a full-time course in the Faculty of Engineering at Strathclyde before applying. You must start your full-time MSc programme at Strathclyde in January 2021.
Find out more about our scholarship for international students
Glasgow is Scotland's biggest & most cosmopolitan city
Our campus is based in the very heart of Glasgow, Scotland's largest city. National Geographic named Glasgow as one of its 'Best of the World' destinations, while Rough Guide readers have voted Glasgow the world’s friendliest city! And Time Out named Glasgow in the top ten best cities in the world - we couldn't agree more!
We're in the city centre, next to the Merchant City, both of which are great locations for sightseeing, shopping and socialising alongside your studies.
Find out what some of our students think about studying in Glasgow!
Find out all about life in Glasgow
Our professors are very friendly, knowledgeable and helpful. The Biomedical Engineering department is ranked among the best in UK and it shows as all our practical sessions have been great.