MEng Computer & Electronic Systems with International Study
ApplyKey facts
- UCAS Code: I200
- Accreditation: triple accreditation from the IET, BCS and Science Council.
Study abroad: possible in Year 4 in Europe, North America, Canada, Singapore, Japan, Australia or New Zealand
Funded places: industry-supported scholarships programme
Study with us
- learn how to design electronic systems and use software engineering to develop the next generation of digital technology
- access to IET Power Academy & Scholarship programme with paid work placements
- gain international experience through studying abroad
- triple professional accreditation by the Institution of Engineering and Technology (IET), Engineering Council and British Computer Society means you can choose to become a Chartered Engineer, IT Specialist or both
Why this course?
What do 3D TV, digital cameras, smartphones, the iPad and sports instant replay have in common? They're all examples of technology which have been developed combining skills from both computer science and electronic engineering.
These subjects have become increasingly intertwined in recent years, so there's a need for engineers with the ability to create and embed intelligence into the products and systems of the future.
Our course is one of the few UK degrees with triple accreditation from the IET, BCS and Science Council.
Accreditation
The Institution of Engineering & Technology (IET) - this programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer.
Accredited by the British Computer Society:
- for the purposes of fully meeting the academic requirement for registration as a Chartered IT Professional
- on behalf of the Science Council for the purposes of fully meeting the academic requirement for registration as a Chartered Scientist
What you'll study
Year 1
You’ll learn the fundamental principles and concepts in electronic engineering, mathematics and computer science classes.
Year 2
Here, you’ll build on this base while being introduced to programming languages and techniques, computer communications and hardware and software engineering systems.
Year 3
You’ll begin to develop specialist knowledge through a selection of classes spanning artificial intelligence, embedded systems and software systems development.
Year 4
You'll spend fourth year at a partner institution abroad. You’ll study an approved curriculum that is equivalent to the home one, and all the subjects/credits you pass count towards your degree at Strathclyde. You’ll not be required to take extra classes on returning.
The choice of which partner is yours – we offer opportunities in Europe through Erasmus or further afield through our international exchanges to USA, Canada, Japan, Singapore, Australia & New Zealand. To give you some ideas, take a look at our latest international exchanges list.
Year 5
In Year 5, you'll have the opportunity to develop your team-working skills through a multidisciplinary group project. This project will have a strong industrial influence and provide you with the opportunity to utilise both your hardware and software skills by developing a fully functioning system, which you are required to demonstrate at an internal business tradeshow/exhibition at the end of the year.
In addition to the project, you'll select modules from a range of advanced electrical, computing and IT subjects.
Top-ranked departments
The course is run jointly by the departments of Electronic & Electrical Engineering and Computer & Information Sciences.
Electronic & Electrical Engineering is one of the premier providers of electronic & electrical engineering education in the UK, renowned for its teaching and research quality, student satisfaction ratings and excellent graduate employment rates. It provides the specialist theoretical and practical training in electronics, communications design and operation, hardware engineering systems, image/video processing and robotics.
Computer & Information Sciences is consistently ranked in the top five departments for its subject in Scotland and delivers the specialised teaching in computer programming, artificial intelligence, information sciences and software engineering.
Facilities
Students have exclusive access to our extensive computing network, and purpose-built teaching spaces including high voltage facilities, and student design and project labs equipped with the latest technologies.
Core Engineering & Science Skills
In first year you'll learn the essential skills and disciplines required to provide a strong foundation for future learning in electronic engineering, maths and computing science. You'll study subjects such as the principles of electronic circuits, software engineering, relevant mathematics and business skills. These skills will be reinforced by practical laboratory sessions which will help to develop your ability to translate concepts into reality.
Compulsory classes
Engineering Industry & Profession
To provide an overview of industry and give you some understanding of the industry environment that you would enter as well as the types of roles you would/could undertake. To explain role and responsibility of the engineering profession and individual engineer.
The class is delivered to first-year undergraduate students in the specific context of electronic and electrical engineering together with relationship to mechanical engineering and computer systems.
Machines, Languages & Computation (20 credits)
This module will help you achieve a broad knowledge of the essence of computation and computational systems, as embodied by the notions of computable functions, formal languages and recursion, logic and computability and abstract machines.
Programming Foundations (20 credits)
This module will provide you with a solid foundation in the principles of computer programming. On completing this module you should have the necessary skills to be able to design, build and test a small system in a high-level language (Java in the current incarnation of the module).
Fundamentals of Computer Systems
This class will further your knowledge of the design parameters of a typical computer system and the impact these have on the functionality, and implementation, of the hardware and software components.
Electronic & Electrical Principles 1
Engineering Mathematics 1E
Engineering Mathematics 2E
Core Engineering & Technology Skills
In second year you'll build on the strong foundations of the first year and further broaden your knowledge through the introduction to a range of programming techniques and languages, and computer communications. More analysis of both hardware and software systems will be undertaken to enable you to see the bigger picture. Small scale projects will be introduced to allow you to hone the skills and techniques you have developed in the first two years of the course.
Compulsory classes
Engineering Design & Manufacture
An overview of manufacturing and the manufacturing industry will provide a general appreciation of the range of processes employed in manufacturing together with an understanding of how components can be manufactured economically and reliably.
Advanced Programming (20 credits)
This module will further your skills in object-oriented programming, provide knowledge of key abstract data types along with their implementation and usage, and provide experience in the development of larger scale software and an introduction to design.
Your main goal is to be able to develop larger programs with specialised data structures and utilising APIs from a specification, and be able to ensure and show how the system they developed matches the specification.
Computer Systems & Architecture (20 credits)
This module will allow you to develop a deeper understanding of typical computer architectures and their instruction sets and the complex tradeoffs between CPU clock speed, cache size, bus organisation, number of core processors, etc, that influence their design and have a fundamental impact on their performance.
Electronic & Electrical Principles 2
Digital Electronic & Programming Design
To introduce you to the use of digital electronics and the rudiments of digital signal processing systems.
Engineering Mathematics 3E
- to develop the means of solving certain differential equations
- to consider applications of Taylor and Maclaurin series
- to generalise earlier ideas in calculus to deal with functions of several variables
- to discuss in more detail matrices, determinants and functions of a complex variable
- to introduce vector calculus and eigenvalues/eigenvectors
Elective classes
A maximum of two classes are to be chosen.
Logic & Algorithms (20 credits)
This module will equip you with the tools to model and measure computation. To build on the module Machines, Languages and Computation, and develop further understanding of the mathematical foundations of computation. To foster an analytical and empirical appreciation of the behaviour of algorithms and the use of abstract data types.
Physical Electronics
Early experiments – e/m, photo-electric effect
Structure of the atom
Wave-particle duality
Schrodinger equation and application in simple systems
Basic Semiconductor Physics
Crystal structure Electron mobility Band theory
Doping of semiconductors
Physics of p-n junctions
Basic Device Physics
Diode operation
LED and laser diodes
.
Electromagnetism
Building Software Systems (20 credits)
This module will extend and deepen your understanding of the analysis, design and implementation of software systems; to provide further experience in the activity of designing and implementing non-trivial systems; and to enable you to demonstrate practical competence in a group environment.
Your goal is the development in a group setting of significant systems from scratch aiming not just at any solution but a good solution, and to be introduced to more general Software Engineering topics.
Computer Systems & Concurrency (20 credits)
This module will allow you to develop a deeper understanding of highly concurrent hardware and software systems. The module will also further your knowledge of the need for, and the design and implementation of, those other vital hardware and software components of a concurrent system, namely multiprocessors and their interconnections, operating systems and networks.
The interactions between many of these components will be investigated by means of significant practical work that consolidates the lecture content in the context of: (i) multiprocessor architectures, (ii) concurrency, (iii) protection and security and (iv) networked and concurrent applications. Software developed in appropriate programming languages will form the basis of much of the practical work thus enabling the student to enhance their software design and implementation skills in this domain.
Signals & Communications Systems
Engineering Innovation & Management
This class aims to provide you with an understanding of the importance of innovation in today’s business environment. The class aims to also develop understanding and skills in the area of innovation management. It aims to develop practical skills for you to integrate a number of themes including:
- product development
- IP
- product finances
- project management
- market analysis with a view to successfully exploiting new ideas
CES mini project
Elective classes
One to be chosen.
Foundations of Artificial Intelligence (20 credits)
This module will help to give you a broad appreciation of the scale and nature of the problems within Artificial Intelligence and to a detailed understanding of some of the fundamental techniques used to address those problems.
Programming Language Definition & Implementation (20 credits)
The module will provide familiarisation with the definition of programming language syntax and semantics, and the translation of these definitions into an implementation of a programming language.
Instrumentation & Microcontrollers
INSTRUMENTATION
To develop techniques for system modelling based on block diagrams and transfer functions and to use such techniques in the context of analysis and design. To introduce you to instrumentation and measurement as an interdisciplinary engineering activity. To explain the basic principles of feedback and control systems.To enable understanding of the dependence of measurement and control on a wide variety of scientific and engineering disciplines; to provide appreciation of the universal application of measurement and control within the same range of disciplines.
To demonstrate engineering design as applied to instrumentation systems and control engineering; in particular, to explain the important contribution of electrical, mechanical and software engineering to this process.
MICROCONTROLLERS
To allow you to gain practical design, implementation and test experience of the techniques required to create combined hardware/software systems with an emphasis on measurement.
Analogue & Digital System Design
Engineering Analysis
The aim of this class is to further develop your skills and abilities in advanced mathematical concepts in the field of engineering. This will be achieved through contextualised problem solving using applicable mathematical and statistical techniques and tools on problems of moderate complexity.
You'll spend this year at a recognised overseas academic partner.
You’ll study an approved curriculum that is equivalent to the home one, and all the subjects/credits you pass count towards your degree at Strathclyde.
The choice of which partner is yours – we offer opportunities in Europe through Erasmus or further afield through our international exchanges to USA, Canada, China, Singapore, Australia & New Zealand.
To give you some ideas, take a look at our latest international exchanges list.
Engineering for Your Professional Future
In year 5 you'll have the opportunity to develop your team-working skills through a multidisciplinary group project.
In addition to the project, you'll select from a range of advanced computing and electronic application areas.
Compulsory class
CES group design project
This project will have a strong industrial influence and provide you with the opportunity to utilise both your hardware and software skills by developing a fully functioning system, which you're required to demonstrate at an internal business tradeshow/exhibition at the end of the year.
Elective classes
At least four classes are to be chosen.
Designing Usable Systems (20 credits)
To develop research level understanding of the design of interfaces for newly emerging technologies and computing domains such as ubiquitous and mobile computing, universal access and collaborative displays.
Distributed Information Systems (20 credits)
This module will help you to gain an extended understanding of the deep technical issues underlying information systems in the particular context of distributing content over the world-wide web.
Advanced Topics in Software Engineering (20 credits)
The module will introduce you to a selection of recent advances in software engineering, along with some of the challenges and outstanding problems.
The detailed aims of the module are:
- To make you aware of key aspects of current software engineering research
- To familiarise you with the state-of-the-art in terms of what problems can be solved and what are the current exciting challenges
- To develop the necessary skills to allow you to contribute to the software engineering research community
- To equip you with the skills and background to appreciate the contributions to software engineering research across the full range of material presented at the key international conferences in the field
Image & Video Processing
Mobile Software and Applications (20 credits)
The aim of this module is to develop an understanding of the underpinning theories, paradigms, algorithms and architectures for building software applications to function in mobile computing environments.
Advanced Digital Signal Processing
Advanced Microcontroller Applications
Control Techniques
This class aims:
- to introduce you to the concepts and tools of modelling, simulation for control of dynamical systems
- to introduce you to the concepts of computer control engineering and enable you to learn the skills required to understand and analyse digital control systems for real time engineering applications
- to enable you to appreciate the design of estimation and its use in control design
- to introduce you to the methods of system parameter identification and its application in control engineering
- to present you with the concepts of fault monitoring, detection, isolation in dynamical systems
- to introduce you to the monitoring and evaluation of closed-loop system performance
- to appreciate the industrial applications of control engineering methods
DSP & FPGA-Based Embedded System Design
Assessment
You’ll be assessed by a wide range of methods including assignments, exams and individual and group-based projects. You’ll make use of web-based and multimedia facilities.
In Years 1 & 2, you'll complete at least six modules per year. Each module is made up of a combination of written assignments, individual and group reports, oral presentations, practical lab work, and where appropriate, an end-of-term exam.
Year 3 will be spent studying at one of our overseas university partners. You'll complete the pre-agreed curriculum, fulfilling all assessments as required by the partner.
In Year 4, you'll complete at least four modules and an individual project. Assessment of this project consists of four elements, interim report, poster & oral presentations, conduct and final report.
In Year 5, you'll complete at least four modules and a major group project. Assessment of this project is based on project specification, interim report, oral presentation, group conduct, peer review, individual assessment, tradeshow show demonstration and a final report.
Learning & teaching
You’ll learn through interactive lectures, small group problem-solving tutorials, practical laboratories as well as industrial visits and seminars by professional engineers.
We aim to develop not only technical engineering and computing expertise but also, and equally importantly, communication, project management, leadership and entrepreneurial skills in our students.
The course typically consists of around 10 lectures, five tutorial/problem-solving classes and three practical classes per week. Students also undertake around 20 hours of self-study.
Entry requirements
Required subjects are shown in brackets.
Highers |
AAAAB (Maths A, Physics or Engineering Science) ABBB or BBBBB (Maths and Physics or Engineering Science) |
---|---|
Advanced Highers | Maths and Physics recommended |
A Levels | Year 1 entry: AAB-BBB (Maths, Physics) Year 2 entry: A*AA-AAB (Maths A, Physics, Computing) |
International Baccalaureate | Year 1 entry: 36-32 (Maths HL5, Physics HL5) Year 2 entry: 38-34 (Maths HL6, Physics HL6, Computer Science HL6) |
HNC/HND | Entry to BEng in the first instance |
International students | View the entry requirements for your country. |
English language requirements | If English is not your first language, please visit our English language requirements page for full details of the requirements in place before making your application. |
Additional information
- deferred entry is accepted
- SQA Higher Applications of Mathematics is not accepted instead of Higher Mathematics
- both IB Higher Level Mathematics pathways are accepted
*Standard entry requirements
Offers are made in accordance with specified entry requirements although admission to undergraduate programmes is considered on a competitive basis and entry requirements stated are normally the minimum level required for entry.
Whilst offers are made primarily on the basis of an applicant meeting or exceeding the stated entry criteria, admission to the University is granted on the basis of merit, and the potential to succeed. As such, a range of information is considered in determining suitability.
In exceptional cases, where an applicant does not meet the competitive entry standard, evidence may be sought in the personal statement or reference to account for performance which was affected by exceptional circumstances, and which in the view of the judgement of the selector would give confidence that the applicant is capable of completing the programme of study successfully.
**Minimum entry requirements
Contextual Admissions for Widening Access
We want to increase opportunities for people from every background.
Strathclyde selects our students based on merit, potential, and the ability to benefit from the education we offer. We look for more than just your grades. We consider the circumstances of your education and will make lower offers to certain applicants as a result.
University preparation programme for international students
We offer international students (non-UK/Ireland) who do not meet the academic entry requirements for an undergraduate degree at Strathclyde the option of completing an Undergraduate Foundation Programme in Business and Social Sciences at the University of Strathclyde International Study Centre.
Upon successful completion, you can progress to your chosen degree at the University of Strathclyde.
Fees & funding
All fees quoted are for full-time courses and per academic year unless stated otherwise.
Fees may be subject to updates to maintain accuracy. Tuition fees will be notified in your offer letter.
All fees are in £ sterling, unless otherwise stated, and may be subject to revision.
Annual revision of fees
Students on programmes of study of more than one year (or studying standalone modules) should be aware that tuition fees are revised annually and may increase in subsequent years of study. Annual increases will generally reflect UK inflation rates and increases to programme delivery costs.
Scotland | £1,820 Fees for students who meet the relevant residence requirements in Scotland are subject to confirmation by the Scottish Funding Council. Scottish undergraduate students undertaking an exchange for a semester/year will continue to pay their normal tuition fees at Strathclyde and will not be charged fees by the overseas institution. |
---|---|
England, Wales & Northern Ireland | £9,250 Assuming no change in fees policy over the period, the total amount payable by undergraduate students will be capped. For students commencing study in 2024/25, this is capped at £27,750 (with the exception of the MPharm and integrated Masters programmes), MPharm students pay £9,250 for each of the four years. Students studying on integrated Masters degree programmes pay an additional £9,250 for the Masters year with the exception of those undertaking a full-year industrial placement where a separate placement fee will apply. |
Republic of Ireland | If you are an Irish citizen and have been ordinary resident in the Republic of Ireland for the three years prior to the relevant date, and will be coming to Scotland for Educational purposes only, you will meet the criteria of England, Wales & Northern Ireland fee status. For more information and advice on tuition fee status, you can visit the UKCISA - International student advice and guidance - Scotland: fee status webpage. Find out more about the University of Strathclyde's fee assessments process. |
International | £26,700 |
Additional costs | Course materials & costs: the department provides a service whereby printed notes are available to the students subject to a small charge to cover copying costs. Students are recommended/required to have copies of such notes but we provide access to both printed copies and e-copies. The latter are provided without charge – in accordance with University policy. Any printed material that is mandatory (in that form) is provided without additional charge to the students. In relation to mandatory books for modules, the requirement is for access and reading rather than purchase specifically. It's expected that students will, as part of their course, read around the subjects and consult text books. Placements & field trips: the department and student societies support a number of industrial visits throughout the year. These trips are not mandatory for specific programmes and modules and any incurred charge to cover transport is either met by the students or by the department. International students: International students may have associated visa and immigration costs. Please see student visa guidance for more information. Study abroad: Study abroad is possible in Years 3 to 5 but is only compulsory (in year 4) for the "with International Study" degree programmes. Students will bear some of the cost of this which will vary depending on country of study. (Support from SAAS and Erasmus may be available). Other costs: students are not required to purchase any specific software licenses – all software used is available on campus machines, either locally or remotely. All undergraduates and PGI students are provided for the duration of their course with student-membership of IET (Professional Body) paid for by the department. Some hardware (micro controllers, design boards) may be made available to students for loan subject to appropriate refundable deposit. Students may consider purchase of low cost microcontroller boards for 3rd year and beyond project work - cost from £10 to £30. Access to EEE Computer labs out of working hours is via card access - card cost is £20 - refundable on return of card. Students are provided with an additional print-quota for use in EEE labs for EEE classes conducted in EEE computer labs. (Paid top-ups possible via University IT services). Expected printing and report binding costs are around £15 to £20 a year - will depend upon exact programme and class assignments. Binding is provided at cost (50p to £1.00) by EEE Resource Centre in R4.01. |
Available scholarships | Take a look at our scholarships search for funding opportunities. |
Please note: All fees shown are annual and may be subject to an increase each year. Find out more about fees.
Glasgow is Scotland's biggest & most cosmopolitan city
Our campus is based right in the very heart of Glasgow. We're in the city centre, next to the Merchant City, both of which are great locations for sightseeing, shopping and socialising alongside your studies.
How can I fund my studies?
Students from Scotland
Fees for students who meet the relevant residence requirements in Scotland, you may be able to apply to the Student Award Agency Scotland (SAAS) to have your tuition fees paid by the Scottish government. Scottish students may also be eligible for a bursary and loan to help cover living costs while at University.
For more information on funding your studies have a look at our University Funding page.
Students from England, Wales & Northern Ireland
We have a generous package of bursaries on offer for students from England, Northern Ireland and Wales:
You don’t need to make a separate application for these. When your place is confirmed at Strathclyde, we’ll assess your eligibility. Take a look at our scholarships search for funding opportunities.
International Students
We have a number of scholarships available to international students. Take a look at our scholarship search to find out more.
Careers
With skills including numeracy, problem-solving, IT, critical thinking and analysis, computer and electronic systems graduates can choose from a wide range of careers. The degree’s triple accreditation ensures graduates have the technical expertise and skills to compete for jobs on an equal footing with computer scientists and electronic engineers, so can consider careers in a diverse range of sectors including:
- Communications
- Software Engineering
- Consumer & Electronics Design
- Automotive & Aerospace Industries
- Information Technology
- Finance & Banking
- Power & Energy
- Project Management & Engineering Consultancy
Apply
Start date:
Computer & Electronic Systems with International Study (1 year entry)
Start date:
Computer & Electronic Systems with International Study (1 year entry)
Start date: Sep 2025
Computer & Electronic Systems with International Study (1 year entry)
Contact us
Discover Uni
Discover Uni includes official statistics about higher education courses taken from national surveys and data collected from universities and colleges about all their students.