BSc Hons Mathematics & Physics
ApplyKey facts
- UCAS Code: GF13
- Accreditation: Institute of Physics
Part-time study: available
Study with us
- learn how to combine maths and physics to help identify and find solutions to important problems in the world
- develop knowledge of mathematical analysis, mechanics, waves and optics, electromagnetism, quantum physics and numerical analysis
- accredited by the Institute of Physics
- benefit from flexibility to transfer between courses
- opportunity to study abroad
- option to undertake final-year project in either subject
Why this course?
Mathematics is everywhere: weather forecasting, cash machines, secure websites, electronic games, liquid crystal displays and statistical data analysis.
Physics is used to help us answer some of the important questions which arise in the world around us. Once we understand the processes involved in these problems, we need to translate our ideas into mathematics to find the solutions.
Our flexible degree structure enables transfer between courses with the opportunity to study abroad.
What you’ll study
This is a four-year joint Honours programme. Each year contains compulsory classes and some years contain either optional classes which relate to different areas of mathematics and physics and/or elective classes from other subject areas in the University.
Years 1 & 2
You’ll take basic classes in both disciplines. In addition to the study of core mathematical methods, you’ll learn calculus, geometry, applied analysis, mechanics, numerical analysis and probability and statistics. Physics classes cover mechanics, waves and optics, electromagnetism and quantum physics, together with experimental physics.
In Years 3 & 4
You’ll choose from the wide range of Mathematics & Physics classes available. It is possible to focus on an area in computational physics, or lasers and optics, or theoretical physics, such as quantum theory, while still developing mathematical skills. Your final-year project may be undertaken in either subject.
Facilities
You’ll have access to well-equipped, modern computing laboratories and teaching rooms, as well as 24-hour access to an advanced computer information network and a sophisticated virtual e-learning environment. We have also an undergraduate common room which gives you a modern and flexible area that's used for individual and group study work and is also a relaxing social space.
Accreditation
Accredited by the Institute of Physics for the purpose of partially meeting the educational requirement for Chartered Physicist.
Staff in the maths and physics departments are supportive and organised in teaching classes and provide plenty of resources for studying. I have also had the opportunity to be part of the Strath Science Scouts, an outreach programme which promotes the study of science. I have had fun visiting schools to run activities and give talks.
BSc Mathematics & Physics
Mathematics
Introduction to Calculus
Applications of Calculus
The fundamental concepts of calculus (differentiation and integration) presented in Applications of Calculus will be examined in more detail, extended to a larger class of functions by means of more sophisticated methods, including an introduction to complex numbers and variables, all demonstrated in application to practical problems including solving basic first and second-order differential equations.
Geometry & Algebra
This class will introduce you to vectors and matrices.
Essential Statistics
This class will introduce basic ideas and techniques of statistics.
Physics
Experimental Physics (20 credits)
This module is an introduction to working in a laboratory environment. You'll learn how to design and undertake simple experiments related to the taught components of the first-year physics curriculum. By the end of the course you will be able to write a formal report, perform simple uncertainty analysis, make dimensional analysis of physical systems, and perform simple data analysis with Python.
Mechanics & Waves (20 credits)
This module will provide you with an understanding of motion of simple mechanical systems, gravitation and simple harmonic motion. You'll also learn about the fundamentals of wave propagation and the superposition of waves as well simple optical phenomena such as diffraction.
Quantum Physics & Electromagnetism (20 credits)
This module is designed to introduce you to quantum mechanics and electromagnetism. It highlights experimental observations that resulted in the development of quantum mechanics, such as the photoelectric effect and blackbody radiation. In terms of electromagnetism, you'll cover basic electrostatics and magnetostatics and develop an understanding of Maxwell’s equations and the Lorentz force law.
Mathematics
Linear Algebra & Differential Equations
This class will introduce you to the basic ideas of linear algebra, such as matrices and determinants, vector spaces, bases, eigenvalues and eigenvectors. You'll study various standard methods for solving ordinary differential equations and understand their relevance.
Advanced Calculus
Basic ideas, techniques and results for calculus of two and three variables, along with differentiation and integration over curves, surfaces and volumes of both scalar and vector fields will be presented.
Mathematical & Statistical Computing
This class will introduce you to the R computing environment. It'll enable you to use R to import data and perform statistical tests, allow you to understand the concept of an algorithm and what makes a good algorithm and will equip you for implementing simple algorithms in R.
Physics
Mechanics, Optics & Waves (20 credits)
This module builds on Mechanics and Waves from year 1. You'll be introduced to special relativity, the vector treatment of rotational motion and the behaviour of systems when forced to oscillate. To extend your understanding of wave phenomena you'll be introduced to the wave equation, Fresnel and Fraunhofer diffraction, interference, geometrical optics, and the operation of lasers.
Quantum Physics & Electromagnetism (20 credits)
This module builds on the material you learned in year 1. You'll be introduced to the probabilistic nature of quantum mechanics, including wave particle duality and Heisenberg uncertainty principle. You'll learn about AC theory, covering inductors, capacitors and transmission lines. You’ll extend your knowledge of Maxwell’s equations to develop a vector model of electromagnetism and the theory of the plane electromagnetic wave in vacuum.
Condensed Matter Physics (20 credits)
Here you'll cover binding forces in solids, bulk material properties, phonons and other forms of collective excitations, crystal structure, elementary concepts of band structure, semi-conductors, magnetic materials and the origins of magnetism, and superconductors.
Gases & Liquids
Complex Variables & Integral Transforms
This class will introduce functions of a complex variable, define concepts such as continuity, differentiability, analyticity, line integration, singular points, etc. It'll examine some important properties of such functions, and consider some applications of them, eg conformal mappings, and the evaluation of real integrals using the Residue Theorem. It'll also introduce you to Fourier and Laplace transform methods for solving linear ordinary differential equations and convolution type integral equations.
Differential Equations
We'll introduce you to analytical methods for solving ordinary and partial differential equations so you'll develop an understanding along with technical skills in this area.
Quantum Physics & Electromagnetism (20 credits)
Building on what you learned in year 2, this module will extend your understanding of quantum mechanics. We'll introduce operators, expectation values and commutation relationships, and advanced concepts like time independent perturbation theory. In electromagnetism you will exploring the wave like nature of electromagnetism as predicted by Maxwell's equations, Poynting’s theorem, reflection and transmission at a dielectric interface, potentials and gauge transformations, and retarded potentials.
Condensed Matter Physics
Gases, Liquids & Thermodynamics (20 credits)
This module covers the physics of gases and liquids and the fundamentals of thermodynamics. This includes the ideal gas law, hydrostatics, isothermal and adiabatic processes, and the laws of thermodynamics. We also present the basic principles of statistical mechanics, and various distributions such as Maxwellian, Fermi-Dirac and Bose-Einstein.
Optional classes
Mechanics of Rigid Bodies & Fluids
This class will:
- convey the generalisation of the mechanics of single-particle systems to many-particle systems
- convey the central ideas of a continuum description of material behaviour and to understand relevant constraints
- ground students in the basic principles governing three-dimensional motions of rigid bodies
- convey how the ideas of continuum theory are applied to static and inviscid fluids.
Numerical Analysis
This module will motivate the need for numerical algorithms to approximate the solution of problems that can't be solved with pen and paper. It'll develop your skills in performing detailed analysis of the performance of numerical methods and will continue to develop your skills in the implementation of numerical algorithms using R.
Computational Physics (20 credits)
During this module, you’ll be introduced to the best practises in software development, and the numerical methods that are most commonly used to solve physical problems including linear algebra, partial, ordinary and stochastic differential equations, and Fourier methods.
Computational Physics
This class will introduce you to the fundamentals of computer programming and the applications of computer programming, using Matlab, to solve physical problems.
You'll choose between a Mathematics & Statistics project and a Physics project.
Communicating Mathematics & Statistics
This class provides you with experience of the skills required to undertake project work, and to communicate the findings in written and oral form using a variety of sources, such as books, journals and the internet.
Physics project (40 credits)
The aim of this module is to help you develop as an enquiring, independent physicist, by undertaking a research project. You'll be under the supervision of a member of staff from the department.
Optional classes - list A
Modelling & Simulation with Applications to Financial Derivatives
Here you'll get an introduction to ideas in mathematics and statistics that can be used to model real systems, with an emphasis on the valuation of financial derivatives. This module places equal emphasis on deterministic analysis (calculus, differential equations) and stochastic analysis (Brownian motion, birth and death processes). In both cases, in addition to theoretical analysis, appropriate computational algorithms are introduced. The first half of the class introduces general modelling and simulation tools, and the second half focuses on the specific application of valuing financial derivatives, including the celebrated Black-Scholes theory.
Applicable Analysis 3
This class will present the main results in Functional Analysis, give an introduction to linear operators on Banach and Hilbert spaces and study applications to integral and differential equations.
Statistical Modelling & Analysis
This class will provide you with a range of applied statistical techniques that can be used in professional life.
Fluids & Waves
You'll be introduced to the theory of Newtonian fluids and its application to flow problems and the dynamics of waves on water and in other contexts.
Finite Element Methods for Boundary Value Problems & Approximation
You'll be presented with the basic theory and practice of finite element methods and polynomial and piecewise polynomial approximation theory.
Applied Statistics in Society
You'll be introduced to a range of modern statistical methods and practices used in industry, commerce and research, and will develop skills in your application and presentation.
Mathematical Biology & Marine Population Modelling
Here you'll learn the application of mathematical models to a variety of problems in biology, medicine, and ecology. It'll show the application of ordinary differential equations to simple biological and medical problems, the use of mathematical modelling in biochemical reactions, the application of partial differential equations in describing spatial processes such as cancer growth and pattern formation in embryonic development, and the use of delay-differential equations in physiological processes. The marine population modelling element will introduce the use of difference models to represent population processes through applications to fisheries, and the use of coupled ODE system to represent ecosystems. Practical work will include example class case studies that will explore a real-world application of an ecosystem model.
Mathematical Introduction to Networks
This class will demonstrate the central role network theory plays in mathematical modelling. It'll also show the intimate connection between linear algebra and graph theory and how to use this connection to develop a sound theoretical understanding of network theory. Finally, it'll apply this theory as a tool for revealing structure in networks.
Medical Statistics
Students will learn new statistical methodology and apply it to real data from medical research studies, with an emphasis on the interpretation of the statistical results in the context of the medical problem being investigated. This skill is necessary for the application of statistics to medical data and differs from the traditional, standard interpretation of statistical textbook problems.
Optional classes - list B
Topics in Solid State Physics (20 credits)
Here you'll track the development of key concepts in solid state physics and how these concepts can be exploited to form functional optical and electronic devices. You will look at the chemistry and physics of crystalline and amorphous materials, with a focus on semiconductor materials, optical activity in solid-state materials, the interaction of semiconductors with light, transistors (bipolar and unipolar), quantum wells and microstructured materials.
Topics in Physics (20 credits)
Here you'll be introduced to state-of-the-art developments in generation and use of charged particles in various forms such as free electron beams, plasmas and astrophysical plasmas. This will include basic plasma physics theory (particle orbit theory, fluid equations, ideal and magnetohydrodynamics, wave equations and kinetic theory), electron optics and electron microscopes, free electron devices and radiation sources. You will also look at the history and geography of our galactic environment, red giants, white dwarfs, supernovae, neutron stars, black holes and physics of the Big Bang.
Topics in Nanoscience (20 credits)
This module will provide an overview of modern nanoscience. It will discuss basic physics related to low dimensional nanostructures and nanoclusters, nanofabrication including top-down and bottom up approaches, characteristics techniques including electron spectroscopy and microscopy, scanning probe microscopy, and optical spectroscopy and microscopy. Noble metal nanoparticles, quantum dots, carbon nanomaterials will be introduced. In particular it will cover the physical and chemical properties of nanoparticles, their production, applications in physics, chemistry and medicine along with issues relating to nanotoxicity and the ethics of medical nanoscience.
Topics in Photonics (20 credits)
During this module you'll gain an insight into laser physics, laser optics and nonlinear optics as used in many photonic laboratories. This will include properties of laser radiation, beam propagation and ray transfer matrices, nonlinear polarization, and second and third order nonlinear effects such as second harmonic generation and the optical Kerr effect.
Topics in Theoretical Physics (20 credits)
In this module we’ll demonstrate the large-scale structure of space-time. You will develop the necessary mathematical concepts (4-vectors, the metric tensor, covariant derivatives, connection coefficients and the Riemann curvature tensor) and use them to derive Einstein's gravitational field equation and look at idealized cosmological solutions for the large-scale structure of the universe, including the standard model. You will study gravitational collapse and the properties of black holes.
Topics in Quantum Optics
Here you'll learn about modern experimental and theoretical developments in the field of quantum optics and atom optics.
Topics in Atomic, Molecular & Nuclear Physics (20 credits)
This module aims to give a general overview and understanding of atomic and molecular physics and relate these to practical applications and related fields of study. You will learn about optical selection rules, atomic structure, and atom-light interactions, and applications such as Atomic Clocks; Laser Cooling; Ion Traps; Magnetic Trapping; Optical Trapping; Quantum Degenerate Gases; Atom Interferometry; Laser frequency calibration and combs. In molecular physics you will learn about: Diatomic molecules; Rotational Modes; Vibrational Modes; Symmetries and Selection Rules.
Topics in Quantum Optics
Students will be introduced to modern experimental and theoretical developments in the field of quantum optics and atom optics. A great emphasis will be put on illustrating the theory by discussing state-of-the art experiments and research papers. Students will gain a solid background in the field of quantum optics, with a specific focus on the subjects listed below. They will understand the key questions in modern research in this area and they will in particular learn to read and understand related research papers.
Learning & teaching
The following teaching methods are used in Mathematics & Physics: lectures (using a variety of media including electronic presentations and computer demonstrations), tutorials, computer laboratories, coursework and projects.
You’ll also learn through structured group work in problem-solving and student presentations.
Physics teaching methods include lectures, tutorials, interactive learning and laboratory work. You’ll also undertake group-based and learning and self-paced project work.
On completion of the programme, you’ll be able to:
- demonstrate knowledge in the main areas of mathematics and physics
- show an understanding of the principal mathematical and educational theories and a critical understanding of one or more specialised areas
- demonstrate skills in identifying relevant physical principles and laws and calculation skills
- develop and evaluate logical arguments, presenting them and their conclusions clearly and accurately
- demonstrate problem-solving skills, for example, abstracting the essentials of problems, formulating them mathematically and finding appropriate solutions
- undertake a critical analysis of data and draw conclusions from the data
- demonstrate a range of general skills, including IT competency
Assessment
Knowledge, understanding and subject-specific skills are assessed by coursework, assignment, reports, presentations and written exams.
Entry requirements
Entry requirements are for September 2023 entry.
Required subjects are shown in brackets.
Highers | Standard entry requirements*:Year 1 entry: AABB/ABBBC (Maths A, Physics B; Advanced Higher Maths and Physics recommended) Minimum entry requirements**:BBBB (including Maths at B, Physics at B and 70% in Strathclyde Summer School Mathematics) or ABBB (Maths A, Physics B) |
---|---|
Advanced Highers | Year 2 entry: AB (Maths A, Physics B) |
A Levels | Standard entry requirements*:Year 1 entry: BBB (Maths B, Physics B) Year 2 entry: ABB (Maths A, Physics B) |
International Baccalaureate | Standard entry requirements*:Year 1 entry: 30 (Mathematics HL5, Physics HL5) (Mathematics HL6, Physics HL6) |
HNC | Year 1 entry: relevant HNC with strong Maths and Physics, B in Graded Unit |
International students | View the entry requirements for your country. |
Deferred entry | Accepted |
*Standard entry requirements
Offers are made in accordance with specified entry requirements although admission to undergraduate programmes is considered on a competitive basis and entry requirements stated are normally the minimum level required for entry.
Whilst offers are made primarily on the basis of an applicant meeting or exceeding the stated entry criteria, admission to the University is granted on the basis of merit, and the potential to succeed. As such, a range of information is considered in determining suitability.
In exceptional cases, where an applicant does not meet the competitive entry standard, evidence may be sought in the personal statement or reference to account for performance which was affected by exceptional circumstances, and which in the view of the judgement of the selector would give confidence that the applicant is capable of completing the programme of study successfully.
**Minimum entry requirements
Widening access
We want to increase opportunities for people from every background. Strathclyde selects our students based on merit, potential and the ability to benefit from the education we offer. We look for more than just your grades. We consider the circumstances of your education and will make lower offers to certain applicants as a result.
Degree preparation course for international students
We offer international students (non-EU/UK) who do not meet the academic entry requirements for an undergraduate degree at Strathclyde the option of completing an Undergraduate Foundation year programme at the University of Strathclyde International Study Centre.
Upon successful completion, you'll be able to progress to this degree course at the University of Strathclyde.
International students
We've a thriving international community with students coming here to study from over 100 countries across the world. Find out all you need to know about studying in Glasgow at Strathclyde and hear from students about their experiences.
Visit our international students' sectionFees & funding
All fees quoted are for full-time courses and per academic year unless stated otherwise.
Fees may be subject to updates to maintain accuracy. Tuition fees will be notified in your offer letter.
All fees are in £ sterling, unless otherwise stated, and may be subject to revision.
Annual revision of fees
Students on programmes of study of more than one year should be aware that tuition fees are revised annually and may increase in subsequent years of study. Annual increases will generally reflect UK inflation rates and increases to programme delivery costs.
Scotland | 2023/24: TBC Fees for students who meet the relevant residence requirements in Scotland are subject to confirmation by the Scottish Funding Council. Scottish undergraduate students undertaking an exchange for a semester/year will continue to pay their normal tuition fees at Strathclyde and will not be charged fees by the overseas institution. |
---|---|
England, Wales & Northern Ireland | £9,250* *Assuming no change in fees policy over the period, the total amount payable by undergraduate students will be capped. For students commencing study in 2023/24, this is capped at £27,750 (with the exception of the MPharm and integrated Masters programmes), MPharm students pay £9,250 for each of the four years. Students studying on integrated Masters degree programmes pay an additional £9,250 for the Masters year with the exception of those undertaking a full-year industrial placement where a separate placement fee will apply. |
International | £17,400 |
Additional costs | International studentsInternational students may have associated visa and immigration costs. Please see student visa guidance for more information. MathematicsCourse materials & costs Class materials (lecture notes and exercise sheets) for the majority of Mathematics & Statistics classes are available free to download. For some classes, students may need access to a textbook. Textbook costs are typically in the £20-60 price range. These prices are dependent on format (e-book, soft or hardback) and whether bought new or second hand. PVG scheme (Protection of Vulnerable Groups) Third-year Maths and Teaching students will need to pay for the full price of a PVG membership scheme. PhysicsCourse materials & costs At present, the department charges students £5 for lecture notes in PH 151 and PH 152. These notes are supplied by the University printers. Digital copies of notes are published on MyPlace for students to download. A recommended textbook that comes with an online homework system is priced at £75 and covers both first and second-year material. If students don't wish to buy this text, the department issues the homework in paper copy for students to hand in for marking. This process is currently under review, as the department are considering moving to an online textbook. This will be priced at £30 and accessed through MyPlace. Other costs The department supplies students with lab books (£1) for recording data through years 1-3. First-year students are supplied with USB keys (£10) for the collection of data. Personal response handsets are also available at lectures. |
University preparation programme fees | International students can find out more about the costs and payments of studying a university preparation programme at the University of Strathclyde International Study Centre. |
Available scholarships | Take a look at our scholarships search for funding opportunities. |
Please note: All fees shown are annual and may be subject to an increase each year. Find out more about fees.
How can I fund my studies?
Students from Scotland
Fees for students who meet the relevant residence requirements in Scotland, you may be able to apply to the Student Award Agency Scotland (SAAS) to have your tuition fees paid by the Scottish government. Scottish students may also be eligible for a bursary and loan to help cover living costs while at University.
For more information on funding your studies have a look at our University Funding page.
Students from England, Wales & Northern Ireland
We have a generous package of bursaries on offer for students from England, Northern Ireland and Wales:
You don’t need to make a separate application for these. When your place is confirmed at Strathclyde, we’ll assess your eligibility. Have a look at our scholarship search for any more funding opportunities.
International Students
We have a number of scholarships available to international students. Take a look at our scholarship search to find out more.
Glasgow is Scotland's biggest & most cosmopolitan city
Our campus is based right in the very heart of Glasgow. We're in the city centre, next to the Merchant City, both of which are great locations for sightseeing, shopping and socialising alongside your studies.
Life in GlasgowCareers
Graduates in Mathematics enter a wide range of employment, from the manufacturing and service industries, the actuarial, accountancy and banking professions, commerce and government, consultancy and education.
Our graduates go on to become investment analysts, numerical analysts, statisticians, actuaries, managers and teachers.
Physics graduates have a range of mathematical and analytical skills which allows them to enter a diverse range of sectors.
Recent graduates have entered engineering, the NHS and education. Many graduates continue to study beyond degree level, studying taught or research-based postgraduate courses.
How much will I earn?
Salary potential depends on the industry you choose to work in. With experience, actuaries can earn more than £60,000, numerical analysts £60,000. Investment analysts can earn up to £100,000 with bonuses.*
*Intended only as a guide.
Apply
Start date: Sep 2023
Mathematics & Physics (1 year entry)
Start date: Sep 2023
Mathematics & Physics (2 year entry)
Contact us
Have you considered?
We've a range of courses similar to this one which may also be of interest.