Blue laser in quantum photonics lab

MPhysPhysics with Advanced Research

Why this course?

This integrated Masters programme is for students who wish to follow a research career in physics. The course provides in-depth learning and additional research opportunities for highly ambitious and motivated students. The degree is designed to accept students directly into second year.

What you'll study

Year 1

All classes are compulsory and you will study the foundations of physics. Classes will cover mathematics, mechanics and waves, electromagnetism and quantum physics. You'll undertake practical work in the teaching laboratory. In addition to this you will also be introduced to the programming language Python and start to learn the basis of computational physics. 

Year 2

All classes are compulsory and will increase your understanding of physics and mathematics topics developed in first year. You'll extended your knowledge of scientific computing and the laboratory work becomes more sophisticated, recognising your growing maturity as a physicist.

Year 3

In addition to extending your study of quantum physics and electromagnetism you will be introduced to new topics centred on solid state physics, thermal and statistical mechanics. You will also take a more advanced mathematics class. The laboratory work undertaken in Year 3 is aimed at further developing your laboratory skills in readiness for the fourth-year project. A key part of being a physicist is the communication of your understanding of the subject and in third year you will take classes designed to enhance the communication skills acquired in Years 1 and 2. You’ll also select elective classes.

Year 4

You’ll undertake a project in research labs supervised by a member of staff in the department. You can select optional classes from topics as diverse as nanoscience, photonics through to quantum optics.

Year 5

This year includes an extended project, which follows on from the project work undertaken in fourth year together with a class that develops the skills to start successful research. These classes are taken in the first semester. In the second semester you can select classes from a range of optional classes which link to those taken in fourth year.

Industrial placement

We recognise the key links between physics and industry and many start-up companies and Small and Medium Enterprises (SMEs) in Scotland owe their existence to physics-based ideas. This is why we offer our students the chance to undertake an industrial placement during the break between Year 3 and Year 4. These placements are offered on a competitive basis.

Study abroad

You'll have the opportunity to spend either a full year or a semester abroad studying under the Erasmus programme, in the case of EU countries, or student exchange programmes with many universities in North America, Canada and the rest of the world.

Major projects

In fourth and fifth year, you'll undertake research projects that cover an area of physics identified by an academic member of staff. The fifth year project is extended and will run over the summer vacation as well.

Postgraduate studies

This degree is designed for students to enter PhD programmes.

Course content

Year 1

Experimental Physics

This class is an introduction to working in a laboratory environment. You'll undertake experiments related to the taught components of the first year physics curriculum, learning how to use standard equipment and handle experimental uncertainties.

Mechanics & Waves

This class is an will provide you with an understanding of motion of simple mechanical systems, gravitation and simple harmonic motion. You'll also learn about the fundamentals of wave propagation and the superposition of waves as well simple optical phenomena such as diffraction.

Quantum Physics & Electromagnetism

This class is designed to introduce you to quantum mechanics and electromagnetism. It highlights experimental observations that resulted in the development of quantum mechanics, such as the photoelectric effect and blackbody radiation. In terms of electromagnetism, you'll cover basic electrostatics such as Gauss's law and magnetostatics.


We will introduce you to the mathematics necessary to support the physics curriculum. The classes will cover topics ranging from differentiation and integration, complex numbers, an introduction to linear algebra and vectors.

Computational & Physics Skills

Here you will start to use Python to write simple programmes to model physical systems. To enhance your programming skills you will complete a group project and use the output from this project to develop communication skills by preparing a poster presentation. You will also start to develop employability skills.

Year 2

Experimental Physics

This class is an extension of Experimental Physics from year 1. You'll undertake more complex experiments that are related to the taught components of the second-year curriculum. You'll see the statistical origin for experimental uncertainties.

Mechanics & Waves

This class builds on Mechanics and Waves from year 1. You'll be introduced to special relativity, the vector treatment of rotational motion and the behaviour of systems when forced to oscillate. To extend your understanding of wave phenomena you'll be introduced to the wave equation, Fresnel and Fraunhofer diffraction and the operation of lasers.

Quantum Physics & Electromagnetism

This class builds on the material you learned in year 1. you'll be introduced to the probabilistic nature of quantum mechanics and you'll develop a vector model of electromagnetism.


The topics covered in these classes will extend the mathematics seen in first year. You will cover many different topics including probability distributions, ordinary and partial differential equations, and Fourier series and transforms.

Computational & Physics Skills

In this class you will build on the Python programming seen in year 1 and be introduced to a range of computational techniques that will make modelling and solving physical system straightforward. Again there will ba group project which will be used to enhance your skills and there will be further interactions with the Careers Service.

Year 3

Experimental Physics
This class extends the laboratory work developed in years 1 and 2. In this class the laboratory work is open ended with so you're able to fully explore the experiments in preparation for the final year project.
Quantum Physics & Electromagnetism
Building on what you learned in year 2, this class will extend your understanding of quantum mechanics by introducing advanced concepts such as time independent perturbation theory and electromagnetism by exploring the wave like nature of electromagnetism as predicted by Maxwell's equations.
Physics Skills
This class will develop your knowledge base and transferable skills in preparation for the project undertaken in years 4 and 5 of the course. It focuses on oral, written and graphical presentations, literature and group-work skills, individual data analysis and interpretation skills, and basic grounding in physics problem solving.
Condensed Matter Physics
Here you'll cover condensed matter physics and be introduced to concepts such as the Fermi surface, superconductors, phonons and other forms of collective excitations.
Statistical Physics
This class covers the fundamentals of thermodynamics through to an introduction to various distributions such as Maxwellian, Fermi-Dirac and Bose-Einstein.
Practical Physics
This class is a reduced version Experimental Physics. It's offered only to students on the BSc Physics with Teaching degree.

Year 4

Physics project
The aim of this class is to help you develop as an enquiring independent physicist by undertaking a project under the supervision of a member of staff of the department.
Physics Skills
This class will further develop your skills as a professional physicist. It'll introduce you to key concepts in the commercialisation of research thereby introducing you to the business world as well as further refining your problem solving skills.
Topics in Physics
Here you'll be introduced to state-of-the-art developments in generation and use of charged particles in various forms such as free electron beams, plasmas and astrophysical plasmas.
Topics in Solid State Physics
Here you'll track the development of key concepts in solid state physics and how these concepts can be exploited to form functional optical and electronic devices.
Topics in Nanoscience
Here you'll be introduced to nanoscience. Specifically, the course will address concepts relating to Nanoparticle production, characterisation and structure before progressing to the physics associated with molecular nanoscience, including intermolecular forces and the techniques used to investigate these forces.
Topics in Photonics
This class provides an introduction to laser physics, laser optics and nonlinear optics as required for the work in many photonic laboratories.
Topics in Computational & Complexity Physics
You'll be introduced to the ideas and concepts associated with complexity physics and to the use of computer simulations to demonstrate these processes.
Topics in Theoretical Physics
The aim of this class is to introduce you to the large scale structure of space-time.
Topics in Quantum Physics
This class provides an introduction to the basic concepts and theoretical ideas of quantum optics.
Topics in Atomic, Molecular & Nuclear Physics
This class aims to give a general overview and understanding of atomic and molecular physics and relate these to practical applications and related fields of study.

Year 5


This is the MPhys Project. It's designed to follow on from the BSc project undertaken in Year 4 and will help you further develop as an independent learner. The project begins in the holiday period between the end of fourth year and the beginning of fifth year.

Research Skills
You'll be introduced to the processes associated with applying for research funds and asesing proposals for research funding along with elements of the ethics of research.
Advanced Topics in Physics
This class provides an introduction to advanced applications of ultra high intensity laser.
Advanced Topics in Solid State Physics
The aim of this class is to introduce advanced concepts associated with the physics of nano-scale structures. This will be underpinned by exposure to relevant key concepts in modern condensed matter physics and optics. Modern computational methods to investigate these systems.
Advanced Topics in Nanoscience
The aim of this class is to introduce the advanced imaging and microscopy techniques associated with modern nanoscience. This will be underpinned by the physics required for a thorough understanding of these methods, including the Molecular Physics of absorption and fluorescence and the Optical Physics relating to microscopy and imaging in the visible and X-ray regions of the electromagnetic spectrum.
Advanced Topics in Photonics
This class provides you with an introduction to phenomena and experimental techniques in modern atomic physics and quantum optics. Aside from theoretical basics, a particular focus will be on experiments and techniques, such as laser cooling and Bose-Einstein condensation, EPR-paradox, quantum teleportation, Schrödinger cats, quantum information and quantum cryptography.
Advanced Topics in Computational & Complexity Physics
You'll extend your awareness of self-organisation and complexity in natural sciences.
Advanced Topics in Theoretical Physics
Here we cover topics in advanced mechanics both classical and quantum by introducing you to the concepts of Lagrangians, Hamiltonians and more in depth study of fields.
Advanced Topics in Quantum Physics
This class provides an introduction to the basic concepts and theoretical ideas of quantum information processing.
Advanced Topics in Electromagnetism & Plasma Physics
This class introduces you to the primary methods for transmitting and manipulating electromagnetic waves and the interaction of these waves with plasmas.


Teaching methods include lectures, tutorials, interactive learning using both personal response systems and web-based teaching resources, directed laboratory work, group-based learning and self-paced project work.

Learning & teaching

Assessment methods include exams, continuous assessment, written reports, moderated peer assessment in tutorials and workshops, talks and poster sessions.

Entry requirements

Required subjects are shown in brackets


Year 1 entry: AAAAB (Physics B, Mathematics B)

A Levels

AAB (Physics and Mathematics)

International Baccalaureate

34 (Physics HL6, Maths HL6)

Additional information

  • deferred entry is accepted

Widening access

We want to increase opportunities for people from every background. Strathclyde selects our students based on merit, potential and the ability to benefit from the education we offer. We look for more than just your grades. We consider the circumstances of your education and will make lower offers to certain applicants as a result.

Find out if you can benefit from this type of offer.

International students

Find out entry requirements for your country.

Degree preparation course for international students

We offer international students (non EU/UK) who do not meet the academic entry requirements for an undergraduate degree at Strathclyde the option of completing an Undergraduate Foundation year programme at the University of Strathclyde International Study Centre.

Upon successful completion, you will be able to progress to this degree course at the University of Strathclyde.

Fees & funding

How much will my course cost?

All fees quoted are for full-time courses and per academic year unless stated otherwise.


  • 2019/20: £1,820

Rest of UK

  • 2019/20: £9,250

Assuming no change in Rest of UK fees policy over the period, the total amount payable by undergraduate students will be capped. For students commencing study in 2017/18, this is capped at £27,750 (with the exception of the MPharm and Integrated Masters courses); MPharm students pay £9,250 for each of the four years. Students studying on Integrated Masters degree programmes pay an additional £9,250 for the Masters year with the exception of those undertaking a full-year industrial placement where a separate placement fee will apply.


  • 2019/20 - £18,750

University preparation programme fees

International students can find out more about the costs and payments of studying a university preparation programme at the University of Strathclyde International Study Centre.

Please note: All fees shown are annual and may be subject to an increase each year. Find out more about fees.

How can I fund my studies?

Students from Scotland and the EU

If you're a Scottish or EU student, you may be able to apply to the Student Award Agency Scotland (SAAS) to have your tuition fees paid by the Scottish government. Scottish students may also be eligible for a bursary and loan to help cover living costs while at University.

For more information on funding your studies have a look at our University Funding page.

Students from England, Wales & Northern Ireland

We have a generous package of bursaries on offer for students from England, Northern Ireland and Wales

You don’t need to make a separate application for these. When your place is confirmed at Strathclyde, we’ll assess your eligibility. Have a look at our scholarship search for any more funding opportunities.

International Students (Non UK, EEA)

We have a number of scholarships available to international students. Take a look at our scholarship search to find out more.

Available scholarships

We have a wide range of scholarships available. Have a look at our scholarship search to find a scholarship.


Throughout the course, you’ll develop the key skills that will make you a successful physicist and maximise your career options.

Our graduates can be found working anywhere from research and development to production and management in every field of science and industry. Some find employment as medical physicists and environmental physicists, others as petroleum engineers, patent officers as well as research scientists.

How much will I earn?

Research scientists earn a similar salary with University professors earning between £50,000 and £70,000.*

The starting salary for an NHS medical physicist as a Healthcare Scientist on the graduate-entry NHS Scientist Training Programme at Band 6 is £26,041.* This could increase to £80,000 in a management position.

Your salary in other sectors will vary.

Where are they now?**

Recent job titles include:

  • Graduate Training Programme Physicist
  • Trainee Engineer
  • Graduate Metering Engineer

Recent employers include:

  • Baker Hughes
  • Cascade Technologies
  • AMEC
  • Emerson Process Management
  • University of Birmingham
  • University of Edinburgh
  • University of Strathclyde

*Information is intended only as a guide and based on NHS salary scales.

**Based on the national Destinations of Leavers from Higher Education survey 2012/13, 2011/12, (aggregated data).

Contact us


How to apply – 10 things you need to know

  1. All undergraduate applications are made through UCAS
    Go to the UCAS website to apply – you can apply for up to five courses.
  2. It costs £12 to apply for a course
    The cost is £23 for two to five courses.
  3. The deadline is 15 January each year
    This is the application deadline for most courses. However, please check the details for your particular course. View a full list of UCAS key dates.

    Applications are still welcome from international students (non-EU) and those living in England, Wales and Northern Ireland.
  4. You might be asked to attend an interview
    Most of our courses make offers based on the UCAS application. However some might ask you to attend an interview or for a portfolio of work. If this is the case, this will be stated in the prospectus entry requirements.
  5. It’s possible to apply directly to Year 2
    Depending on your qualifications, you might be able to apply directly to Year 2 - or even Year 3 - of a course. Speak to the named contact for your course if you want to discuss this.
  6. There’s three types of decision
    • unconditional – you’ve already met our entry requirements
    • conditional – we’ll offer you a place if you meet certain conditions, usually based on your exams
    • unsuccessful – we’ve decided not to offer you a place
  7. You need to contact UCAS to accept your offer
    Once you’ve decided which course you’d like to accept, you must let UCAS know. You don’t need to decide until you’ve received all offers. UCAS will give you a deadline you must respond by.

    You’ll choose one as your firm choice. If the offer is unconditional or if you meet the conditions, this is the course you’ll study.

    You’ll also have an insurance choice. This is a back-up option if you don’t meet the conditions of your first choice.
  8. You don’t need to send us your exam results (Scotland, England & Wales)
    If you’re studying in Scotland, England or Wales, we receive a copy of your Higher/Advanced Higher/A Level results directly from the awarding body. However, if you are studying a different qualification, then please contact us to arrange to send your results directly.
  9. We welcome applications from international students

    Find out further information about our entry and English language requirements.

    International students who don’t meet the entry requirements, can apply for our pre-undergraduate programmes.

    There’s also an online application form.

    For further information:
  10. Here’s a really useful video to help you apply

Discover more about Strathclyde