Dr Trevor Bushell

Reader

Strathclyde Institute of Pharmacy and Biomedical Sciences

Personal statement

I obtained my BSc (Hons) in Pharmacology from the University of Glasgow (1992) and my PhD in Neuroscience from the University of Bristol (1996) before undertaking postdoctoral research at the University of Chicago and Imperial College London. I took up my position here at Strathclyde in 2002.

My research interest lies primarily in the field of neuroscience and focuses on the modulation of neuronal excitability and synaptic transmission in both physiological and pathophysiological conditions. This currently takes several directions including the following: 

  1. Identifying novel roles for protease-activated receptor 2 (PAR-2) in the central nervous system (CNS).
  2. Examining how peripheral inflammation affect CNS function and animal behaviour (with Dr Hui-Rong Jiang)
  3. Determining the role of Toll-like receptor 3 (TLR3) in the CNS development. 
  4. Investigating the role of mitogen-activated protein kinase phosphatase-2 (MKP2) in the CNS.
  5. Developing novel microfluidic devices for neuroscience research (with Dr Michele Zagnoni).

A variety of preparations are utilised in our research including mammalian expression systems, cultured neurones, organotypic slice cultures and acute brain slices. Techniques used include cell death assays, electrophysiology, immunocytochemistry, overexpression of fluorescently tagged proteins of interest, molecular biological techniques including site-directed mutagenesis and real time RT-PCR and in collaboration with  Professor Judy Pratt we utilise a variety of tests to understand rodent behaviour. 

I am involved in teaching both the MPharm and BMS cohorts in numerous classes ranging from 1st to 4th year.  In addition I am lead of the Neuroscience and Mental Health research group.

I am currently the Strathclyde local group representative for the British Neuroscience Association.  I am also a full member of the Society for Neuroscience and a Fellow of the Higher Education Academy.

Publications

Increased levels of IL-16 in the central nervous system during neuroinflammation are associated with infiltrating immune cells and resident glial cells
Hridi Shehla U, Barbour Mark, Wilson Chelsey, Franssen Aimee JPM, Harte Tanith, Bushell Trevor J, Jiang Hui-Rong
Biology Vol 10 (2021)
https://doi.org/10.3390/biology10060472
An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton
Schniete Jana K, Tinning Peter W, Scrimgeour Ross C, Robb Gillian, Kölln Lisa S, Wesencraft Katrina, Paul Nikki R, Bushell Trevor J, McConnell Gail
Scientific Reports Vol 11 (2021)
https://doi.org/10.1038/s41598-020-78282-6
The development of proteinase-activated receptor-2 modulators and the challenges involved
McIntosh Kathryn A, Cunningham Margaret R, Bushell Trevor, Plevin Robin
Biochemical Society Transactions Vol 48, pp. 2525-2537 (2020)
https://doi.org/10.1042/BST20200191
Mitogen‐activated protein kinase phosphatase‐2 deletion modifies ventral tegmental area function and connectivity and alters reward processing
Pytka Karolina, Dawson Neil, Tossell Kyoko, Ungless Mark A, Plevin Robin, Brett Ros R, Bushell Trevor J
European Journal of Neuroscience Vol 52, pp. 2838-2852 (2020)
https://doi.org/10.1111/ejn.14688
Interleukin-16 inhibits sodium channel function and GluA1 phosphorylation via CD4- and CD9-independent mechanisms to reduce hippocampal neuronal excitability and synaptic activity
Hridi Shehla U, Franssen Aimée JPM, Jiang Hui-Rong, Bushell Trevor J
Molecular and Cellular Neuroscience Vol 95, pp. 71-78 (2019)
https://doi.org/10.1016/j.mcn.2019.01.002
Fast optical sectioning for widefield fluorescence mesoscopy with the mesolens based on HiLo microscopy
Schniete Jan, Franssen Aimee, Dempster John, Bushell Trevor J, Amos William Bradshaw, McConnell Gail
Scientific Reports Vol 8 (2018)
https://doi.org/10.1038/s41598-018-34516-2

More publications

Professional activities

Senior Phase Induction Day @ Strathclyde: SIPBS Virtual Drug Discovery Workshop
Contributor
6/6/2019
BNA Festival of Neuroscience 2019
Member of programme committee
14/4/2019
Federation of European Neuroscience Societies (External organisation)
Member
16/7/2018
Federation of European Neuroscience Societies (External organisation)
Member
16/7/2018
BNA2019 (Event)
Advisor
1/3/2018
Strathclyde Institute Of Pharmacy And Biomedical Sciences (Organisational unit)
Chair
2018

More professional activities

Projects

Understanding the role of cholesterol in the radiation resistance of glioblastoma and its feasibility as a druggable target to improve treatment prognosis (CRUK Radnet)
Gomez-Roman, Natividad (Principal Investigator) Bushell, Trevor (Co-investigator) Graham, Duncan (Co-investigator)
24-Jan-2021 - 23-Jan-2022
Doctoral Training Partnership 2020-2021 University of Strathclyde | Coyle, Chelbi
Bushell, Trevor (Principal Investigator) Plevin, Robin (Principal Investigator) Tian, Lian (Principal Investigator) MacLean, Mandy (Co-investigator) Coyle, Chelbi (Research Co-investigator)
01-Jan-2020 - 01-Jan-2024
Is the novel small molecule PAR2 activator, AC-264163, neuroprotective in a mouse model of Alzheimer's Disease?
Bushell, Trevor (Principal Investigator)
01-Jan-2020 - 31-Jan-2021
EPSRC Centre for Doctoral Training in Medical Devices and Health Technologies | Megarity, Daniel
Zagnoni, Michele (Principal Investigator) Bushell, Trevor (Co-investigator) Megarity, Daniel (Research Co-investigator)
01-Jan-2017 - 01-Jan-2022
TartanSW: a new method for spectrally-resolved standing wave cell microscopy and mesoscopy
McConnell, Gail (Principal Investigator) Bushell, Trevor (Co-investigator)
"Important biological processes such as cell movement depend on dynamic changes in the shape of the cell surface. As well as in motility and the ingestion of bacterial pathogens, the cell membrane changes shape actively in the formation of synapses between nerve cells and the handling of antigens by cells of the immune system. The neuronal growth cone shows protrusions occurring over a time scale of seconds and much faster movements are seen in many motile cells.

Unfortunately, conventional microscope methods fail to provide exact answers to one of the basic questions: 'what is the shape of the cell membrane and how high is it above the substrate in the case of attached cells?'. For 50 years reflection interference contrast has been used but this method actually reports the distribution of mass within the cell near to the membrane rather than the position of the membrane.

We have recently reported a standing wave method of fluorescence imaging to map the surface of the cell membrane with super-resolution in depth, using a method that is almost cost-free to implement in a biomedical sciences laboratory with standard resource and infrastructure. In our standing-wave work, we placed fluorescently-stained red blood cells atop a simple mirror instead of a microscope slide and using a standing wave (SW) to create sub-diffraction limited planes of illumination. We observed an axial resolution of around 90 nm, which is comparable to other the super-resolution techniques described, but because we generate multi-planar images, we can readily obtain 3D information on the specimen at this resolution.

The essence of this proposal is to add to this standing-wave work a new method which we call TartanSW (because of the similarity of the coloured fringe patterns to textile patterns). A contour map without heights marked on the lines is of little value, but we have discovered that by using multiple wavelength narrowband detection we can recognize the order of the standing wave antinodes by their colours and so tell the difference between hills and valleys.

We propose to first develop a simple imaging microscope system, capable of recording multiple wavelengths simultaneously at speeds of up to 100 images per second, to provide super-resolved 3D information on cell structure. We will first characterise the microscope with dye monolayers and model specimens, and then extend the TartanSW imaging to individual red cells prepared with a fluorescent label that stains the cell membrane. Based on our preliminary work we expect to be able to detect very tiny but high-speed changes in the structure of the red cell membrane. We will also apply the method to study the highly dynamic skeletal structure of neurones and follow the growth of the cell edge over time.

We also propose to perform TartanSW imaging with the Mesolens, a new giant objective lens that is capable of imaging large tissue specimens with sub-cellular resolution and which is at present unique to our laboratory. By applying TartanSW with the Mesolens, it will be possible to image hundreds of cells at even higher 3D resolution than the Mesolens can manage at present. We will apply TartanSW mesoscopy to study the same red cell and neurone specimens described previously, and in imaging hundreds of cells with high resolution simultaneously we expect it will be easier to detect rare events or abnormal cells that may indicate onset of disease, as in the malaria infected red cells which we have already studied.

We will aid and encourage other laboratories to take up super-resolution TartanSW microscopy, which could be implemented at low cost in any lab already equipped with a fluorescence microscope, and although the Mesolens is presently unique to Strathclyde, the existing Mesolab facility will support wide access to the proposed technology."
01-Jan-2017 - 06-Jan-2020
Phase 2 Untangle
Zagnoni, Michele (Principal Investigator) Bushell, Trevor (Co-investigator)
01-Jan-2014 - 31-Jan-2017

More projects

Address

Strathclyde Institute of Pharmacy and Biomedical Sciences
Hamnett Wing

Location Map

View University of Strathclyde in a larger map