Save this page
Save this page

My Saved Pages

  • Saved page.

My Saved Courses

  • Saved page.
Reset

Recently visited

  • Saved page.

Dr Trevor Bushell

Senior Lecturer

Strathclyde Institute of Pharmacy and Biomedical Sciences

Personal statement

I obtained my BSc (Hons) in Pharmacology from the University of Glasgow (1992) and my PhD in Neuroscience from the University of Bristol (1996) before undertaking postdoctoral research at the University of Chicago and Imperial College London. I took up my position here at Strathclyde in 2002.

My research interest lies primarily in the field of neuroscience and focuses on the modulation of neuronal excitability and synaptic transmission in both physiological and pathophysiological conditions. This currently takes several directions: the role of proteinase-activated receptors in central neurones, the function of MAP kinase phosphatases within the CNS, the G-protein coupled receptor modulation of two-pore K+ channels (K2Ps) and immune cell involvement in neurological disorders. I also collaborate with Dr Michele Zagnoni developing microfluidic devices to enable novel neuroscience research. A variety of preparations are utilised in our research including mammalian expression systems, cultured neurones, organotypic slice cultures and acute brain slices. Techniques used include cell death assays, electrophysiology, immunocytochemistry, overexpression of fluorescently tagged proteins of interest, molecular biological techniques including site-directed mutagenesis and real time RT-PCR and in collaboration with Dr Ros Brett and Professor Judy Pratt we utilise a variety of tests to understand rodent behaviour. 

I am involved in teaching both the MPharm and BMS cohorts in numerous classes ranging from 1st to 4th year.  In addition I am  co-ordinator of the recently formed New Medicines Fundamental research group.

I am currently the Strathclyde local group representative for the British Neuroscience Association as well as being on the organising committee for Glasgow Neuroscience Day. I am also a full member of the Society for Neuroscience and a Fellow of the Higher Education Academy.

Publications

Toll-like receptor 3 activation impairs excitability and synaptic activity via TRIF signalling in immature rat and human neurons
Ritchie Louise, Tate Rothwelle, Chamberlain Luke H., Robertson Graham, Zagnoni Michele, Sposito Teresa, Wray Selina, Wright John A., Bryant Clare E., Gay Nicholas J., Bushell Trevor J.
Neuropharmacology Vol 135, pp. 1-10, (2018)
http://dx.doi.org/10.1016/j.neuropharm.2018.02.025
A 340/380 nm light emitting diode illuminator for Fura-2 AM ratiometric Ca2+ imaging of live cells with better than 5 nM precision
Tinning P. W., Franssen A. J. P. M., Hridi S. U., Bushell T. J., McConnell G.
Journal of Microscopy Vol 269, pp. 212-220, (2018)
http://dx.doi.org/10.1111/jmi.12616
The therapeutic effect of anti-CD52 treatment in murine experimental autoimmune encephalomyelitis is associated with altered IL-33 and ST2 expression levels
Barbour Mark, Wood Rachel, Hridi Shehla U, Wilson Chelsey, McKay Grant, Bushell Trevor J, Jiang Hui-Rong
Journal of Neuroimmunology, pp. 1-33, (2018)
http://dx.doi.org/10.1016/j.jneuroim.2018.02.012
The C-terminal domain of zDHHC2 contains distinct sorting signals that regulate intracellular localisation in neurons and neuroendocrine cells
Salaun Christine, Ritchie Louise, Greaves Jennifer, Bushell Trevor J., Chamberlain Luke H.
Molecular and Cellular Neuroscience Vol 85, (2017)
http://dx.doi.org/10.1016/j.mcn.2017.07.007
A microfluidic platform for the characterisation of CNS active compounds
MacKerron Christopher, Robertson Graham, Zagnoni Michele, Bushell Trevor
Scientific Reports, (2017)
http://dx.doi.org/10.1038/s41598-017-15950-0
GABAB receptors suppress burst-firing in reticular thalamic neurons
Cain Stuart M, Garcia Esperanza, Waheed Zeina, Jones Karen L, Bushell Trevor J, Snutch Terrance P
Channels, pp. 1-13, (2017)
http://dx.doi.org/10.1080/19336950.2017.1358836

more publications

Professional activities

Federation of European Neuroscience Societies (External organisation)
Advisor
16/7/2018
Federation of European Neuroscience Societies (External organisation)
Advisor
16/7/2018
FENS Forum of Neuroscience 2020
Participant
14/7/2018
BNA2019 (Event)
Advisor
1/3/2018
Dementia-on-a-chip: enabling novel dementia research through microfluidics.
Speaker
14/3/2017
BNA Festival of Neurosc
Member of programme committee
1/11/2015

more professional activities

Projects

TartanSW: a new method for spectrally-resolved standing wave cell microscopy and mesoscopy
McConnell, Gail (Principal Investigator) Bushell, Trevor (Co-investigator)
"Important biological processes such as cell movement depend on dynamic changes in the shape of the cell surface. As well as in motility and the ingestion of bacterial pathogens, the cell membrane changes shape actively in the formation of synapses between nerve cells and the handling of antigens by cells of the immune system. The neuronal growth cone shows protrusions occurring over a time scale of seconds and much faster movements are seen in many motile cells.

Unfortunately, conventional microscope methods fail to provide exact answers to one of the basic questions: 'what is the shape of the cell membrane and how high is it above the substrate in the case of attached cells?'. For 50 years reflection interference contrast has been used but this method actually reports the distribution of mass within the cell near to the membrane rather than the position of the membrane.

We have recently reported a standing wave method of fluorescence imaging to map the surface of the cell membrane with super-resolution in depth, using a method that is almost cost-free to implement in a biomedical sciences laboratory with standard resource and infrastructure. In our standing-wave work, we placed fluorescently-stained red blood cells atop a simple mirror instead of a microscope slide and using a standing wave (SW) to create sub-diffraction limited planes of illumination. We observed an axial resolution of around 90 nm, which is comparable to other the super-resolution techniques described, but because we generate multi-planar images, we can readily obtain 3D information on the specimen at this resolution.

The essence of this proposal is to add to this standing-wave work a new method which we call TartanSW (because of the similarity of the coloured fringe patterns to textile patterns). A contour map without heights marked on the lines is of little value, but we have discovered that by using multiple wavelength narrowband detection we can recognize the order of the standing wave antinodes by their colours and so tell the difference between hills and valleys.

We propose to first develop a simple imaging microscope system, capable of recording multiple wavelengths simultaneously at speeds of up to 100 images per second, to provide super-resolved 3D information on cell structure. We will first characterise the microscope with dye monolayers and model specimens, and then extend the TartanSW imaging to individual red cells prepared with a fluorescent label that stains the cell membrane. Based on our preliminary work we expect to be able to detect very tiny but high-speed changes in the structure of the red cell membrane. We will also apply the method to study the highly dynamic skeletal structure of neurones and follow the growth of the cell edge over time.

We also propose to perform TartanSW imaging with the Mesolens, a new giant objective lens that is capable of imaging large tissue specimens with sub-cellular resolution and which is at present unique to our laboratory. By applying TartanSW with the Mesolens, it will be possible to image hundreds of cells at even higher 3D resolution than the Mesolens can manage at present. We will apply TartanSW mesoscopy to study the same red cell and neurone specimens described previously, and in imaging hundreds of cells with high resolution simultaneously we expect it will be easier to detect rare events or abnormal cells that may indicate onset of disease, as in the malaria infected red cells which we have already studied.

We will aid and encourage other laboratories to take up super-resolution TartanSW microscopy, which could be implemented at low cost in any lab already equipped with a fluorescence microscope, and although the Mesolens is presently unique to Strathclyde, the existing Mesolab facility will support wide access to the proposed technology."
Period 01-Aug-2017 - 06-Aug-2019
An EPSRC Life Sciences Interface Doctoral Training Centre for Medical Devices | Robertson, Graham
Bushell, Trevor (Principal Investigator) Zagnoni, Michele (Co-investigator) Robertson, Graham (Research Co-investigator)
Period 01-Oct-2010 - 04-Sep-2015
Medical Devices Doctoral Training Centre Renewal | Robertson, Graham
Bushell, Trevor (Principal Investigator) Zagnoni, Michele (Co-investigator) Robertson, Graham (Research Co-investigator)
Period 01-Oct-2010 - 04-Sep-2015
Capacity Building Award in Integretive Mammalian Biology: A joint initiative from Glasgow University and Strathclyde University | Stenson, Gillian
Pratt, Judith (Principal Investigator) Bushell, Trevor (Co-investigator)
Period 01-Oct-2008 - 01-Apr-2012
BB/J013854/1 BBSRC DPT Studentships (with Glasgow University) | Wilson, Chelsey
Jiang, Hui-Rong (Principal Investigator) Bushell, Trevor (Co-investigator) Wilson, Chelsey (Research Co-investigator)
Period 01-Oct-2014 - 01-Oct-2018
BBSRC Doctoral Training Grant (DTG) | Ritchie, Louise
Bushell, Trevor (Principal Investigator) Paul, Andrew (Co-investigator)
Period 01-Oct-2012 - 23-Feb-2016

more projects

Address

Strathclyde Institute of Pharmacy and Biomedical Sciences
Hamnett Wing John Arbuthnott Building

Location Map

View University of Strathclyde in a larger map