BSc Hons Data Analytics
ApplyKey facts
- UCAS Code: I3H9
Study with us
Studying a BSc Honours degree in Data Analytics at the University of Strathclyde, you'll be learning at an award-winning academic institution - the only University to have won the Times Higher Education University of the Year award twice (2012/2019).
- gain experience in using data analysis software, including those widely used in industry
- develop expertise in a wide range of topics in mathematics, statistics and computer science
- learn to code using industry-standard programming languages
- opportunity to work on real-life problems and analyse data through our business and industry links
- demand for graduates with skills in data analytics is forecast to rise rapidly
Why this course?
In the modern world information is everywhere – from the daily stream of financial data emerging from the world’s markets to worldwide internet traffic, personal health records, or simply your local newsagent’s sales figures for the last week.
Understanding this vast array of data is one of the key challenges we currently face and requires expertise in subjects such as mathematics, statistics and computing.
Data Analytics is the science of examining raw data using advanced computing technologies. It's growing to be a fundamental part of modern business and industry.
In fact, in their recent report, The Tech Partnership and SAS UK stated that “Data is the 'new oil'" and that developing talent in data analytics will allow us to refine that oil to power the UK information economy. They also reported that the demand for graduates will skills in data analytics will surge in the coming years.
Our BSc Hons in Data Analytics degree will provide you with these cutting-edge skills, enabling you to tackle problems in dynamic business environments. It will make you well placed for an exciting and rewarding career in an industry that is set to expand.

What you’ll study
This joint Honours programme is taught in partnership between the Department of Mathematics & Statistics and the Department of Computer & Information Sciences.
Each year contains compulsory classes and some years include either optional classes and/or elective classes.
Years 1 & 2
Mathematics, statistics and computer science are studied. In addition to core mathematical methods, you'll study:
- calculus
- geometry
- analysis
- probability theory
Computer science classes include:
- machines, languages & computation
- information & information systems
- programming foundations
- logic & algorithms
- user & data modelling
Years 3 & 4
Classes can be chosen focus on topics such as:
- experimental design
- risk analysis
- survey analysis
- dynamic modelling
- network analysis
- computer programming
- software engineering
- artificial intelligence
- web and mobile applications
- information access & mining
- the theory of computation
The final-year project may be carried out in either subject. We work with several companies and organisations to provide suggestions for student projects. These can be either individual or group final-year projects.
Facilities
Each department has teaching rooms which provide you with access to modern teaching and computer equipment and are conducive to student learning. The undergraduate common room gives you a modern and flexible area which is used for individual and group study work and also a relaxing social space.
Many data analysis software packages will be used, including those widely used in industry.
Learning & teaching
Guest lectures
Several lecturers also work for Government organisations. Through these links you'll have the opportunity to work on real-life problems and analyse real data from these organisations.
Course content
Current students are taking the following classes, and we expect the syllabus to be similar to this in future years.
Machines, Languages & Computation (20 credits)
This module will help you achieve a broad knowledge of the essence of computation and computational systems, as embodied by the notions of computable functions, formal languages and recursion, logic and computability and abstract machines.
Information & Information Systems (20 credits)
This module will help you understand a broad knowledge of information systems and how information is created, used and disseminated within an information society.
Programming Foundations (20 credits)
This module will provide you with a solid foundation in the principles of computer programming. On completing this class you should have the necessary skills to be able to design, build and test a small system in a high-level language (Java in the current incarnation of the class).
Introduction to Calculus
You'll study the basic concepts and standard methods of mathematical notation and proof, polynomial equations and inequalities, sequences and series, functions, limits and continuity, differentiation and integration.
Applications of Calculus
The fundamental concepts of calculus (differentiation and integration) presented in Applications of Calculus will be examined in more detail, extended to a larger class of functions by means of more sophisticated methods, including an introduction to complex numbers and variables, all demonstrated in application to practical problems including solving basic first and second-order differential equations.
Essential Statistics
This class will present some basic ideas and techniques of statistics while introducing some essential study skills.
Geometry & Algebra
This class will highlight connections between geometry and algebra and how they inform each other. It will also include the introductory treatment of vectors and matrices, in particular to their role in linear and affine transformations in 2D and 3D.
Advanced Programming (20 credits)
This module will further your skills in object-oriented programming, provide knowledge of key abstract data types along with their implementation and usage, and to provide experience in the development of larger-scale software and an introduction to design.
Your main goal is to be able to develop larger programs with specialized data structures and utilizing APIs from a specification, and being able to ensure and show how the system they developed matches the specification.
Logic & Algorithms (20 credits)
This module will equip you with the tools to model and measure computation. To build on the module Machines, Languages and Computation, and develop further understanding of the mathematical foundations of computation. To foster an analytical and empirical appreciation of the behaviour of algorithms and the use of abstract data types.
User & Data Modelling (20 credits)
This module will provide you with a critical appreciation and understanding of how to model user activities and the data to support them, together with how to implement systems and databases to support user activities.
Probability & Statistical Inference
Presentation of the basic concepts of probability theory and statistical inference will be covered to provide you with the tools to appropriately analyse a given data set and effectively communicate the results of such analysis.
Mathematical & Statistical Computing
This class will introduce you to the R computing environment. It'll enable you to use R to import data and perform statistical tests, allow you to understand the concept of an algorithm and what makes a good algorithm and will equip you for implementing simple algorithms in R.
Linear Algebra
This class will give an introduction to the basic ideas of linear algebra, such as matrices and determinants, vector spaces, bases, eigenvalues and eigenvectors.
Multivariate Calculus
The class will present the basic ideas, techniques and results for differentiation of two and three variables, and differentiation along curves, surfaces and volumes of both scalar and vector fields.
Building Software Systems (20 credits)
This module will extend and deepen your understanding of the analysis, design and implementation of software systems; to provide further experience in the activity of designing and implementing non-trivial systems; and to enable you to demonstrate practical competence in a group environment.
Your goal is the development in a group setting of significant systems from scratch aiming not just at any solution but a good solution, and to be introduced to more general Software Engineering topics.
Inference & Regression Modelling
This class will:
- review the concepts of probability distributions and how to work with these
- present approaches to parameter estimation, focusing on maximum likelihood estimation, bootstrap estimation, and properties of estimators
- present hypothesis testing procedures, including classical likelihood ratio tests and computer-based methods for testing parameter values, and goodness-of-fit tests.
- introduce and provide understanding of the least squares multiple regression model, general linear model, transformations and variable selection procedures
- present use of R functions for regression and interpretation of R output
Stochastics & Financial Econometrics
You'll be introduced to the basic concepts of random phenomena evolving in time, from two complementary points of view: probabilistic modelling and data-driven analysis. Presentation of underlying ideas of simple stochastic processes, time series models, and the associated probability theory and statistical techniques will be covered. In addition to applications of the methods to financial and economic systems, including modelling, data analysis, and forecasting.
Optional classes
You're required to take 40 credits of optional classes from those listed below.
Foundations of Artificial Intelligence (20 credits)
This module will help to give you a broad appreciation of the scale and nature of the problems within Artificial Intelligence and a detailed understanding of some of the fundamental techniques used to address those problems.
Web Applications Development (20 credits)
This module will give you an understanding of the technologies used in the development of N-tier Internet-based applications.
Functional Programming (20 credits)
The module aims to provide you with skills in basic functional programming and experience in integrated deployment of those skills.
Mobile App Development (20 credits)
The module will provide you with a good understanding of the issues in developing for mobile environments, approaches to handling these issues and skills in developing for a widespread mobile platform.
Communicating Mathematics & Statistics (20 credits)
This class provides you with experience of the skills required to undertake project work, and to communicate the findings in written and oral form using a variety of sources, such as books, journals and the internet.
Individual Project (40 credits)
This module will allow you to demonstrate practical and documentary competence. You'll also be expected to give a demonstration of your work.
Optional classes
You're required to take optional classes from those listed below to ensure that the curriculum contains no fewer than 40 credits in each subject. Students should refer to relevant programme regulations in the University Calendar regarding class selection requirements and credits in order to meet the programme requirements.
Please note that not all classes will be available every year.
List A
Statistical Modelling & Analysis (20 credits)
This class will provide you with a range of applied statistical techniques that can be used in professional life.
Applied Statistics in Society (20 credits)
You'll be introduced to a range of modern statistical methods and practices used in industry, commerce and research, and will develop skills in your application and presentation.
Mathematical Introduction to Networks (20 credits)
This class will demonstrate the central role network theory plays in mathematical modelling. It'll also show the intimate connection between linear algebra and graph theory and how to use this connection to develop a sound theoretical understanding of network theory. Finally, it'll apply this theory as a tool for revealing structure in networks.
Medical Statistics (20 credits)
Students will learn new statistical methodology and apply it to real data from medical research studies, with an emphasis on the interpretation of the statistical results in the context of the medical problem being investigated. This skill is necessary for the application of statistics to medical data and differs from the traditional, standard interpretation of statistical textbook problems.
List B
Software Architecture & Design (20 credits)
This module aims to:
- enable you to understand the challenges of advanced software design and the issues associated with large-scale software architectures, frameworks, patterns and components
- develop your understanding of the tools and techniques that may be used for the automatic analysis and evaluation of software
Theory of Computation (20 credits)
Building on the previous material in software development, you'll extend and formalise your abilities in the area of computational complexity.
Information Access & Mining (20 credits)
This module will allow you to understand the fundamentals of information access and information mining. The module will cover a range of techniques for extracting information from textual and non-textual resources, modelling the information content of resources, detecting patterns within information resources and making use of these patterns.
Advanced Functional Programming
Understanding the mathematical structures arising in advanced functional programs as mediated by the following concepts: type classes and constructor classes, monoids, functors, applicative functors, monads and monad transformers, arrows, comonads, inductive and coinductive types, recursion patterns including folds and unfolds, continuations, and generalised algebraic data types.
Entry requirements
Entry requirements are for September 2023 entry.
Required subjects are shown in brackets.
Highers |
Year 1 entry: AABB/ABBBC (Maths A, Advanced Higher Maths recommended) BBBB (including Maths at B and 70% in Strathclyde Summer School Mathematics) or ABBB (including Maths A) |
---|---|
Advanced Highers | Year 2 entry: AB (Maths A, Computing Science B) |
A Levels | Standard entry requirements*: Year 1 entry: BBB (Maths) Year 2 entry: ABB (Maths A, Computer Science B) |
International Baccalaureate | Standard entry requirements*: Year 1 entry: 30 (Mathematics HL5) (Mathematics HL6, Computer Science HL5 including option D: Object-oriented Programming, in Java) |
HNC/HND | Year 1 entry: relevant HNC with strong mathematical content, B in Graded Unit |
International students | View the entry requirements for your country. |
Deferred entry | Accepted |
*Standard entry requirements
Offers are made in accordance with specified entry requirements although admission to undergraduate programmes is considered on a competitive basis and entry requirements stated are normally the minimum level required for entry.
Whilst offers are made primarily on the basis of an applicant meeting or exceeding the stated entry criteria, admission to the University is granted on the basis of merit, and the potential to succeed. As such, a range of information is considered in determining suitability.
In exceptional cases, where an applicant does not meet the competitive entry standard, evidence may be sought in the personal statement or reference to account for performance which was affected by exceptional circumstances, and which in the view of the judgement of the selector would give confidence that the applicant is capable of completing the programme of study successfully.
**Minimum entry requirements
Widening access
We want to increase opportunities for people from every background. Strathclyde selects our students based on merit, potential and the ability to benefit from the education we offer. We look for more than just your grades. We consider the circumstances of your education and will make lower offers to certain applicants as a result.
Degree preparation course for international students
We offer international students (non-EU/UK) who do not meet the academic entry requirements for an undergraduate degree at Strathclyde the option of completing an Undergraduate Foundation year programme at the University of Strathclyde International Study Centre.
Upon successful completion, you'll be able to progress to this degree course at the University of Strathclyde.
International students
We've a thriving international community with students coming here to study from over 140 countries across the world. Find out all you need to know about studying in Glasgow at Strathclyde and hear from students about their experiences.
Visit our international students' sectionFees & funding
All fees quoted are for full-time courses and per academic year unless stated otherwise.
Fees may be subject to updates to maintain accuracy. Tuition fees will be notified in your offer letter.
All fees are in £ sterling, unless otherwise stated, and may be subject to revision.
Annual revision of fees
Students on programmes of study of more than one year should be aware that tuition fees are revised annually and may increase in subsequent years of study. Annual increases will generally reflect UK inflation rates and increases to programme delivery costs.
Scotland | 2023/24: £1,820 Fees for students who meet the relevant residence requirements in Scotland are subject to confirmation by the Scottish Funding Council. Scottish undergraduate students undertaking an exchange for a semester/year will continue to pay their normal tuition fees at Strathclyde and will not be charged fees by the overseas institution. |
---|---|
England, Wales & Northern Ireland | £9,250 *Assuming no change in RUK fees policy over the period, the total amount payable by undergraduate students will be capped. For students commencing study in 2023/24, this is capped at £27,750 (with the exception of the MPharm and integrated Masters programmes), MPharm students pay £9,250 for each of the four years. Students studying on integrated Masters degree programmes pay an additional £9,250 for the Masters year with the exception of those undertaking a full-year industrial placement where a separate placement fee will apply. |
International | £17,400 |
Additional costs | Course materials & costs: class materials (lecture notes and exercise sheets) for the majority of Mathematics & Statistics classes are available free to download. For some classes, students may need access to a textbook. Textbook costs are typically in the £20-60 price range. These prices are dependent on format (e-book, soft or hardback) and whether bought new or second hand. PVG scheme (Protection of Vulnerable Groups): third-year Maths with Teaching students will need to pay for the full price of a PVG membership scheme. International students: International students may have associated visa and immigration costs. Please see student visa guidance for more information. |
Available scholarships | We have a wide range of scholarships available. Have a look at our scholarship search to find a scholarship. |
Please note: All fees shown are annual and may be subject to an increase each year. Find out more about fees.
How can I fund my studies?
Students from Scotland
Fees for students who meet the relevant residence requirements in Scotland, you may be able to apply to the Student Award Agency Scotland (SAAS) to have your tuition fees paid by the Scottish government. Scottish students may also be eligible for a bursary and loan to help cover living costs while at University.
For more information on funding your studies have a look at our University Funding page.
Students from England, Wales & Northern Ireland
We have a generous package of bursaries on offer for students from England, Northern Ireland and Wales:
You don’t need to make a separate application for these. When your place is confirmed at Strathclyde, we’ll assess your eligibility. Have a look at our scholarship search for any more funding opportunities.
International Students
We have a number of scholarships available to international students. Take a look at our scholarship search to find out more.
Glasgow is Scotland's biggest & most cosmopolitan city
Our campus is based right in the very heart of Glasgow. We're in the city centre, next to the Merchant City, both of which are great locations for sightseeing, shopping and socialising alongside your studies.
Life in GlasgowCareers
Graduates with skills in data analytics are in huge demand across all sectors, both nationally and internationally. This demand is predicted to increase in future. Research from DCMS (Department for Digital, Culture, Media and Sport) predicts that data analysis will become the fastest growing digital skills cluster, increasing by an estimated 33% from 2019 to 2024.
Graduates will be well placed for a high-powered career as a data analyst, or data scientist, for example, in online information providers such as Google and Yahoo, social media, banking, insurance and retail industries – both online and high-street.
Apply
Start date: Sep 2023
Data Analytics (1 year entry)
Start date: Sep 2023
Data Analytics (2 year entry)
Contact us
Have you considered?
We've a range of courses similar to this one which may also be of interest.
Discover Uni
Discover Uni includes official statistics about higher education courses taken from national surveys and data collected from universities and colleges about all their students.