Our publications

 

2019

Multispectral time-of-flight imaging using light-emitting diodes

A. Griffiths et al., Optics Express, Vol. 27, p35485-35498 (2019). https://doi.org/10.1364/OE.27.035485

On-chip GaN-based dual-color micro-LED arrays and their application in visible light communication

J. Correia Carreira et al., Optics Express, Vol. 27, pA1517-1528 (2019). https://doi.org/10.1364/OE.27.0A1517

Scalable visible light communications with a micro-LED array projector and high-speed smartphone camera

A. Griffiths et al., Optics Express, Vol. 27, Issue 11, p15585-15594 (2019) https://doi.org/10.1364/OE.27.015585

Ultra-Low Cost High-Density Two-Dimensional Visible-Light Optical Interconnects

N. Bamiedakis et al., Journal of Lightwave Technology, Vol. 37, Issue 13, (2019). https://doi.org/10.1109/JLT.2019.2914310

1 Gbps free-space deep ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm

X. He et al., Photonics Research, Vol. 7, pB41-B47 (2019). https://doi.org/10.1364/PRJ.7.000B41

High-speed visible light communication based on a III-nitride series-biased micro-LED array

E. Xie et al., Journal of Lightwave Technology, Vol. 37, Issue 4, (2019). https://doi.org/10.1109/JLT.2018.2889380

Neural network based joint spatial and temporal equalization for MIMO-VLC system

S. Rajbhandari et al., IEEE Photonics Technology Letter, Vol. 31, Issue 11, (2019). https://doi.org/10.1109/LPT.2019.2909139

2018

Transfer-printed micro-LED and polymer-based transceiver for visible light communications

K. Rae et al., Optics Express, Vol. 26, Issue 24, P31474, (2018). https://doi.org/10.1364/OE.26.031474

Thin film diamond membranes bonded on-demand with SOI ring resonators

P. Hill et al., Diamond and Related Materials, Vol. 88, P215-221 (2018) https://doi.org/10.1016/j.diamond.2018.07.020

Hybrid integration of an evanescently coupled AlGaAs micro-disk resonator with a silicon waveguide by nanoscale-accurate transfer printing

B. Guilhabert et al., Optics Letters, Vol. 43, Issue 20, P4883-4486, (2018) https://doi.org/10.1364/OL.43.004883

Temporal encoding to reject background signals in a low complexity, photon counting communication link

A. Griffiths et al., Materials, Vol. 11, P1671 (2018) https://doi.org/10.3390/ma11091671

High accuracy transfer printing of single-mode membrane silicon photonic devices

J. McPhillimy et al., Optics Express, Vol. 26, Issue 13 P16679-16688 (2018) https://doi.org/10.1364/OE.26.016679

Positioning and data broadcasting using illumination pattern sequences displayed by LED arrays

J. Herrnsdorf et al., IEEE Transactions on Communications, (in press), https://doi.org/10.1109/TCOMM.2018.2850892

The impact of solar irradiance on visible light communications

M.S. Islim et al., Journal of Lightwave Technology, Vol. 36, Issue 12, P2376-2386, (2018). http://dx.doi.org/10.1109/JLT.2018.2813396

Flexible glass hybridized colloidal quantum dots for Gb/s visible light communications

C. Foucher et al., IEEE Photonics Journal, Vol. 10, Issue 1, http://dx.doi.org/10.1109/JPHOT.2018.2792700

2017

Design, fabrication and application of GaN-based micro-LED arrays with individual addressing by N-electrodes

E Xie et al., IEEE Photonics Journal, Vol. 9, Issue 6, 7907811, (2017). http://dx.doi.org/10.1109/JPHOT.2017.2768478

Gb/s visible light communications with colloidal quantum dot color converters

M Leitao et al., IEEE Journal of Selected Topics in Quantum Electronics, Vol 23., Issue 5, P1900810 (2017). http://dx.doi.org/10.1109/JSTQE.2017.2690833

A multi-gigabit/sec integrated multiple input multiple output visible light communication demonstrator

S. Rajbhandari et al., Journal of Lightwave Technology, Vol. 35, Issue 20, P4358 - 4365 (2017). http://dx.doi.org/10.1109/JLT.2017.2694486

InGaN micro-LEDs integrated onto colloidal quantum dot functionalised ultra-thin glass

K. Rae et al., Optics Express, Vol. 25, Issue 16, P19179-19184 (2017). http://dx.doi.org/10.1364/OE.25.019179

Towards 10 Gb/s OFDM-based visible light communication using a GaN violet micro-LED

M.S. Islim et al., Photonics Research, Vol. 5, Issue 2, A35-A43 (2017). http://dx.doi.org/10.1364/PRJ.5.000A35

Gb/s visible light communications with colloidal quantum dot color converters

M.F. Leitao et al., IEEE Journal of Selected Topics in Quantum Electronics,Vol. 23, Issue 5 (2017). http://dx.doi.org/10.1109/JSTQE.2017.2690833

CMOS-integrated GaN LED array for discrete power level stepping in visible light communications

Alexander D. Griffiths et al., Optics Express, Vol 25, issue 8 (2017). http://dx.doi.org/10.1364/OE.25.00A338

Positioning and space-division multiple access enabled by structured illumination with light-emitting diodes

J. Herrnsdorf et al., Journal of Lightwave Technology, accepted/in press (2017).

Fluorene-containing tetraphenylethylene molecules as lasing materials

C. Orofino et al., Journal of Polymer Science Part A: Polymer Chemistry, Vol. 55, Issue 4, P734-746 (2017). http://dx.doi.org/10.1002/pola.28421

Characteristics of GaN-based light emitting diodes with different thicknesses of buffer layer grown by HVPE and MOCVD

P. Tian et al., Journal of Physics D: Applied Physics, Vol. 50, Number 7, 075101 (2017). http://dx.doi.org/10.1088/1361-6463/50/7/075101

A review of Gallium Nitride LEDs for multi-gigabit-per-second visible light data communications

S. Rajbhandari et al., Semiconductor Science and Technology, Vol. 32, p023001 (2017). https://doi.org/10.1088/1361-6641/32/2/023001

2016

High-Speed Integrated Digital to Light Converter for Short Range Visible Light Communication

A.V.N. Jalajakumari et al., IEEE Photonics Technology Letters, Vol. 29, p118-121 (2016). http://dx.doi.org/10.1109/LPT.2016.2624281

High bandwidth GaN-based micro-LEDs for multi-Gbps visible light communications

R.X.G. Ferreira et al., IEEE Photonics Technology Letters, Vol. 28, Issue 19, p. 2023-2026 (2016). http://dx.doi.org/10.1109/LPT.2016.2581318

Visible light communication using InGaN optical sources with AlInGaP nanomembrane downconverters

J.M.M. Santos et al., Optics Express, Vol 24, Issue 9, p10020-10029 (2016). http://dx.doi.org/10.1364/OE.24.010020

LED based wavelength division multiplexed 10 Gb/s visible light communications

H. Chun et al., Journal of Lightwave Technology, Vol 34., Issue 13, p3047 (2016). http://dx.doi.org/10.1109/JLT.2016.2554145

Transfer printing of semiconductor nanowires with lasing emission for controllable nanophotonic device fabrication

B. Guilhabert et al., ACS Nano, Vol 10, Issue 4, pp 3951-3958 (2016). http://dx.doi.org/10.1021/acsnano.5b07752

Wireless Visible Light Communications Employing Feed-Forward Pre-Equalization and PAM-4 Modulation

X. Li et al., Journal of Lightwave Technology, Vol. 34, Issue 8, pp 2049-2055 (2016). http://dx.doi.org/10.1109/JLT.2016.2520503

Control of edge bulge evolution during photoresist reflow and its application to diamond micro-lens fabrication

H. Liu et al, Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, Vol 34, Issue 2 (2016). http://dx.doi.org/10.1116/1.4943558

CdSxSe1-x/ZnS semiconductor nanocrystal laser with sub 10kW/cm2 threshold and 40nJ emission output at 600 nm

L.J. McLellan et al., Optics Express, Vol. 24, Issue 2, pp. A146-A153 (2016). http://dx.doi.org/10.1364/OE.24.00A146

Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers

H. Liu et al., Diamond and Related Materials, Vol. 65, P 37-41 (2016). http://dx.doi.org/10.1016/j.diamond.2016.01.016

Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays

P. Tian et al., Optics Express, Vol. 24, Issue 1, pp 699-707 (2016). http://dx.doi.org/10.1364/OE.24.000699

Organic Semiconductor Laser Biosensor: Design and Performance Discussion

A-M. Haughey et al., IEEE Journal of Selected Topics in Quantum Electronics, Vol. 22, Issue 1, P 1-9 (2016). http://dx.doi.org/10.1109/JSTQE.2015.2448058

RGB and white-emitting organic lasers on flexible glass

C Foucher et al., Optics Express, Vol 24, Issue 3, P2273-2280 (2016).  https://doi.org/10.1364/OE.24.002273

2015

High-Speed Integrated Visible Light Communication System : Device Constraints and Design Considerations

S. Rajbhandari et al., IEEE Journal on Selected Areas in Communications, Vol 33., Issue 9, PP 1750-1757 (2015). http://dx.doi.org/10.1109/JSAC.2015.2432551

μLED-Based Single-Wavelength Bi-directional POF Link With 10 Gb/s Aggregate Data Rate

X. Li et al., Journal of Lightwave Technology, Vol. 33, Issue 17, PP 3571-3576 (2015). https://doi.org/10.1109/JLT.2015.2443984

Hole transport assisted by the piezoelectric field in In0.4Ga0.6N/GaN quantum wells under electrical injection

S. Zhang et al., Journal of Applied Physics, Vol. 118, P 125709 (2015)http://dx.doi.org/10.1063/1.4931575

Ultralow-threshold up-converted lasing in oligofluorenes with tailored strong nonlinear absorption

B. Guzelturk et al., Journal of Materials Chemistry C, Vol. 3, Issue 46, PP 12018-12025 (2015). http://dx.doi.org/10.1039/C5TC02247A

Diode-pumped, mechanically-flexible polymer DFB laser encapsulated by glass membranes

C. Foucher et al., Optics Express, Vol. 22, Issue 20, PP 24160-24168 (2015). http://dx.doi.org/10.1364/OE.22.024160

Heterogeneous integration of gallium nitride light-emitting diodes on diamond and silica by transfer printing

A.J. Trindade et al., Optics Express, Vol. 23, Issue 7, PP 9329 (2015). http://dx.doi.org/10.1364/OE.23.009329

Hybrid GaN LED with capillary-bonded II – VI MQW color-converting membrane for visible light communications

J.M.M. Santos et al., Semiconductor Science and Technology, Vol. 30, Issue 3, PP 035012 (2015). http://dx.doi.org/10.1088/0268-1242/30/3/035012

Active-Matrix GaN Micro Light-Emitting Diode Display With Unprecedented Brightness

J. Herrnsdorf et al., IEEE Transactions on Electron Devices, Vol. 62, Issue 6, pp 1918-1925 (2015). http://dx.doi.org/10.1109/TED.2015.2416915

2014

Visible Light Communication Using a Blue GaN µLED and Fluorescent Polymer Color Converter

H. Chun et al., IEEE Photonics Technology Letters, Vol. 26, Issue 20, PP 2035-2038 (2014). http://dx.doi.org/10.1109/LPT.2014.2345256

Hybrid organic semiconductor lasers for bio-molecular sensing

A-M. Haughey et al., Faraday Discussions, Vol 174, P 369-381 (2014). http://dx.doi.org/10.1039/c4fd00091a

Size-dependent capacitance study on InGaN-based micro-light-emitting diodes

W. Yang et al., Journal of Applied Physics, Vol 116, p044512 (2014). http://dx.doi.org/10.1063/1.4891233

Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

P. Tian et al., Applied Physics Letters, Vol 105, p171107 (2014). http://dx.doi.org/10.1063/1.4769835

Planar micro- and nano-patterning of GaN light-emitting diodes: Guidelines and limitations

J. Herrnsdorf et al., Journal of Applied Physics, Vol 115, p084503 (2014). http://dx.doi.org/10.1063/1.4866496

Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates

P. Tian et al., Journal of Applied Physics, Vol 115, issue 3, p033112  (2014). http://dx.doi.org/10.1063/1.4862298

An oligofluorene truxene based distributed feedback laser for biosensing applications

A-M. Haughey et al., Biosensors and Bioelectronics, Vol. 54, P679-686 (2014). http://dx.doi.org/10.1016/j.bios.2013.11.054

A 3 Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride µLED

D. Tsonev et al., IEEE Photonics Technology Letters, Vol 26, issue 7, p637 - 640 (2014). http://dx.doi.org/10.1109/LPT.2013.2297621

Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

C. Foucher et al., Applied Physics Letters, Vol. 104, Issue 14, P141108 (2014). http://dx.doi.org/10.1063/1.4871372

Nanosecond colloidal quantum dot lasers for sensing

B. Guilhabert et al., Optics Express, Vol. 22, Issue 6, P 7308-7319 (2014). http://dx.doi.org/10.1364/OE.22.007308

Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells

A. Jeorrett et al., Optics Express, Vol 22, issue 2, pp.1372-1380 (2014). http://dx.doi.org/10.1364/OE.22.001372

Micro-structured light emission from planar InGaN light-emitting diodes

D. Massoubre et al., Semicond. Sci. Technol., Vol 29 p015005 (2014). http://doi:10.1088/0268-1242/29/1/015005

2013

Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates

A.J. Trindade et al., Applied Physics Letters, Vol 103, pp 253302 (2013). http://dx.doi.org/10.1063/1.4851875

Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers

J. Herrnsdorf et al., Laser & Photonics Reviews, Vol 7, issue 6, pp 1065-1078 (2013). http://dx.doi.org/10.1002/lpor.201300110

An organic semiconductor laser based on star-shaped truxene-core oligomers for refractive index sensing

A.-M. Haughey et al., Sensors and Actuators B: Chemical, Vol 185, pp 132-139 (2013). http://dx.doi.org/10.1016/j.ccr.2012.10.020

Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: A key chemical technology for advanced device applications

I. M. Watson, Coordination Chemistry Reviews, Vol 257, pp 2120-2141 (2013). http://dx.doi.org/10.1016/j.ccr.2012.10.020

Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation.

N. McAlinden et al., Optics Letters, Vol 38, No. 6, pp 922-924 (2013). http://dx.doi.org/10.1364/OL.38.000992

Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes

R. P. Green et al., Applied Physics Letters, Vol 102, No. 9, pp 091103 (2013). http://dx.doi.org/10.1063/1.4794078

1.5 Gbit/s Multi-Channel Visible Light Communications Using CMOS-Controlled GaN-Based LEDs

S. Zhang et al., Journal of Lightwave Technology, Vol 31, No. 8, pp 1211-1216 (2013). http://dx.doi.org/10.1109/JLT.2013.2246138

 


2012

Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes

P. Tian et al., Applied Physics Letters, Vol 101, pp.231110 (2012). http://dx.doi.org/10.1063/1.4769835 

Sub-Micron Lithography Using InGaN Micro-LEDs: Mask-Free Fabrication of LED Arrays

B. Guilhabert et al. IEEE Photonics Technology Letters, Vol 24, No. 24, pp 2221-2224. http://dx.doi.org/10.1109/LPT.2012.2225612

Hybrid organic/GaN photonic crystal light-emitting diode

J. Herrnsdorf et al., Applied Physics Letters, Vol 101, No. 14, pp.141122 (2012). http://dx.doi.org/10.1063/1.4757870

Stripe Excitation of High Gain Media With Disorder

J. Herrnsdorf et al., IEEE Journal of Quantum Electronics, Vol 48, No. 9, pp.1184 - 1192 (2012). http://dx.doi.org/10.1109/JQE.2012.2204959

CMOS-controlled color-tunable smart display

S. Zhang et al., IEEE Photonics Journal, Vol 4, No. 5, pp. 1639-1646 (2012). http://dx.doi.org/10.1109/JPHOT.2012.2212181

Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging

E. Y. Xie et al., Journal of Applied Physics, Vol 112, No. 1, (2012). http://dx.doi.org/10.1063/1.4733335

Modification of emission wavelength in organic random lasers based on photonic glass

Y Chen et al., Organic Electronics Vol 13, No. 7, pp. 1129-1135 (2012). http://dx.doi.org/10.1016/j.orgel.2012.03.014

Mechanically flexible organic semiconductor laser array

B. Guilhabert et al., IEEE Photonics Journal, Vol 4, No. 3, pp. 684-690 (2012). http://dx.doi.org/10.1109/JPHOT.2012.2195651

Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals

N. Laurand et al., Optical Materials, Vol 2, No. 3, pp. 250-260 (2012). http://dx.doi.org/10.1364/OME.2.000250

Visible-light communications using a CMOS-controlled micro-light-emitting-diode array

J.J.D. McKendry et al., Journal of Lightwave Technology, Vol 30, No. 1, pp. 61-67 (2012). http://dx.doi.org/10.1109/JLT.2011.2175090

Generation of primary hepatocyte microarrays by piezoelectric printing

A. Zarowna-Dabrowska et al., Colloids and Surfaces B: Biointerfaces, Vol 89, pp. 126-132 (2012). http://dx.doi.org/10.1016/j.colsurfb.2011.09.016

Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes

Z. Gong et al., Semiconductor Science and Technology, Vol 27, No. 1, (2012).
http://dx.doi.org/10.1088/0268-1242/27/1/015003


2011

Flexible distributed-feedback colloidal quantum dot laser

Y. Chen et al., Applied Physics Letters. Vol 99, No. 24, pp. 1069 (2011). http://dx.doi.org/10.1063/1.3659305

Dip-pen nanolithography of nanostructured oligofluorene truxenes in a photo-curable host matrix

A. Hernandez- et al., Journal of Materials Chemistry, Vol 21, No. 37, pp. 14209-14212 (2011). http://dx.doi.org/10.1039/c1jm11378j

Novel ultra-portable explosives sensor based on a CMOS fluorescence lifetime analysis micro-system

Y. Wang et al., AIP Advances, Vol 1, No. 3, pp. 032115 (2011). http://dx.doi.org/10.1063/1.3624456

Inkjet printed conductive silver tracks applied to GaN-based microstructured light emitting diodes

M. Wu et al., Applied Physics A: Materials Science and Processing, Vol 104, No. 4, pp. 1003-1009 (2011). http://dx.doi.org/10.1007/s00339-011-6506-x

Emission characteristics of photonic crystal light-emitting diodes

A.Z. Khokhar et al., Applied Optics, Vol 50, No. 19, pp. 3233-3239 (2011). http://dx.doi.org/10.1364/AO.50.003233

InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles

Z. Gong et al., Applied Physics A: Materials Science and Processing, Vol 103, No. 2, pp. 389-393 (2011). http://dx.doi.org/10.1007/s00339-011-6349-5

Colloidal quantum dot random laser

Y. Chen et al., Optics Express, Vol 19, No. 4, pp. 2996-3003 (2011). http://dx.doi.org/10.1364/OE.19.002996

Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diodes

A. Zarowna-Dabrowska et al., Optics Express, Vol 19, No. 3, pp. 2720-2728 (2011). http://dx.doi.org/10.1364/OE.19.002720

Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite

Y. Chen et al., Organic Electronics, Vol 12, No. 1, pp. 62-69 (2011). http://dx.doi.org/10.1016/j.orgel.2010.09.021


2010

Flexible blue-emitting encapsulated organic semiconductor DFB laser

J. Herrnsdorf et al., Optics Express, Vol 18, No. 25, pp. 25535-25545 (2010). http://dx.doi.org/10.1364/OE.18.025535

A vertically integrated CMOS microsystem for time-resolved fluorescence analysis

B.R. Rae et al., IEEE Transactions on Biomedical Engineering, Vol 4, No. 6, pp. 437-444 (2010). http://dx.doi.org/10.1109/TBCAS.2010.2077290

Nanofabrication of gallium nitride photonic crystal light-emitting diodes

A.Z. Khokhar et al., Microelectronic Engineering, Vol 87, No. 11, pp. 2200-2207 (2010). http://dx.doi.org/10.1016/j.mee.2010.02.003

High-speed visible light communications using individual pixels in a micro light emitting diode array

J. McKendry et al., IEEE Photonics Technology Letters, Vol 22, No. 18, pp. 1346-1348 (2010). http://dx.doi.org/10.1109/LPT.2010.2056360

Diamond double-sided microlenses and reflection gratings

C.L. Lee et al.,, Optical Materials, Vol 32, No. 9, pp. 1123-1129 (2010). http://dx.doi.org/10.1016/j.optmat.2010.03.013

Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers

B. Guilhabert et al., Journal of Optics, Vol 12, No. 3, (2010). http://dx.doi.org/10.1088/2040-8978/12/3/035503

High reflectivity GaN/Air vertical distributed Bragg reflectors fabricated by wet etching of sacrificial AllnN layers

C. Xiong et al., Semiconductor Science and Technology, Vol 25, No. 3, pp. 032001-032006 (2010). http://dx.doi.org/10.1088/0268-1242/25/3/032001

Size-dependent light output, spectral shift, and self-heating of 400nm InGaN light-emitting diodes

Z. Gong et al., Journal of Applied Physics, Vol 107, No. 1, pp. 013103 (2010). http://dx.doi.org/10.1063/1.3276156

Fabrication and spectroscopy of GaN microcavities made by epitaxial lift-off

C. Xiong et al., Superlattices and Microstructures Vol 47, No. 1, pp. 129-133 (2010). http://dx.doi.org/10.1016/j.spmi.2009.07.001 


2009

Maskless ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes

D. Elfström et al., Optics Express, Vol 17, No. 26, pp. 23522-23529 (2009). http://dx.doi.org/10.1364/OE.17.023522

A CMOS time-resolved fluorescence lifetime analysis micro-system

B.Rae et al., Sensors, Vol 9, No. 11, pp. 9255-9274 (2009). http://dx.doi.org/10.3390/s91109255

Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing

M. Wu et al., Optics Express, Vol 17, No. 19, pp. 16436-16443 (2009). http://dx.doi.org/10.1364/OE.17.016436

Fabrication and characterisation of microscale air bridges in conductive gallium nitride

C. Xiong et al., Applied Physics A: Materials Science and Processing, Vol 96, No. 2, pp. 495-501 (2009). http://dx.doi.org/10.1007/s00339-009-5228-9

White light emission via cascade Forster energy transfer in (Ga,In)N quantum well/polymer blend hybrid structures

G. Itskos et al., Nanotechnology, Vol 20, No. 275207, (2009). http://dx.doi.org/10.1088/0957-4484/20/27/275207

Star-shaped oligofluorene nanostructured blend materials : controlled micro-patterning and physical characteristics

M. Wu et al., Applied Physics A: Materials Science and Processing, Vol 97, No. 1, pp. 119-123 (2009). http://dx.doi.org/10.1007/s00339-009-5308-x

Optobionic vision-a new genetically enhanced light on retinal prosthesis

P. Degenaar et al., Journal of Neural Engineering, Vol 6, No. 3, pp. 035007 (2009). http://dx.doi.org/10.1088/1741-2560/6/3/035007

Low-threshold organic laser based on an oligofluorene truxene with low optical losses

G. Tsiminis et al., Applied Physics Letters, Vol 94, No. 24, pp. 243304 -1-243304 -3 (2009). http://dx.doi.org/10.1063/1.3152782

Individually Addressable AlInGaN Micro-LED Arrays With CMOS Control and Subnanosecond Output Pulses

J. McKendry et al., IEEE Photonics Technology Letters, Vol 21, No. 12, pp. 811-813 (2009). http://dx.doi.org/10.1109/LPT.2009.2019114

Influence of surface-related states on the carrier dynamics in (Ga,In)N/GaN single quantum wells

A. Othonos et al., Applied Physics Letters, Vol 94, No. 20, pp. 203102-1-203102-3 (2009). http://dx.doi.org/10.1063/1.3139079

Direct laser writing of nanosized oligofluorene truxenes in UV-transparent photoresist microstructures

A.J.C. Kuehne et al., Advanced Materials, Vol 21, No. 7, pp. 781-+ (2009). http://dx.doi.org/10.1002/adma.200802656

Multi-site optical excitation using ChR2 and micro-LED array

N. Grossman et al., Journal of Neural Engineering, Vol 7, No. 016004, (2009). http://dx.doi.org/10.1088/1741-2560/7/1/016004


2008

Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micropixelated light-emitting diodes

B. Guilhabert et al., Optics Express, Vol 16, pp. 18933 (2008). http://dx.doi.org/10.1364/OE.16.018933

Patterning and integration of polyfluorene polymers on micro-pixellated uV alInGaN light-emitting diodes

B. Guilhabert et al., Journal of Physics D: Applied Physics, Vol 41, No. 094008, (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094008

Improved sectioning in a slit scanning confocal microscope

V. Poher et al., Optics Letters, Vol 33, No. 16, pp. 1813-1815 (2008). http://www.opticsinfobase.org/DirectPDFAccess/ACC5FCF2-BDB9-137E-CC78283B7F1CFB2F_170340.pdf?da=1&id=170340&seq=0

Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma

C.L. Lee et al., Diamond and Related Materials, Vol 17, No. 7-10, pp. 1292-1296 (2008). http://dx.doi.org/10.1016/j.diamond.2008.01.011

Individually-addressable flip-chip AllnGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power

H.Z. Zhang et al., Optics Express, Vol 16, No. 13, pp. 9918-9926 (2008). http://dx.doi.org/10.1364/OE.16.009918

Micro-pixellated LEDs for science and instrumentation

M.D. Dawson et al., Journal of Physics D: Applied Physics, Vol 41, No. 9, (2008). http://dx.doi.org/10.1088/0022-3727/41/9/090301

Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot

J.S. Liu et al., Journal of Physics D: Applied Physics, Vol 41, No. 9, (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094005

CMOS driven micro-pixel LEDs integrated with single-photon avalanche diodes for time-resolved flourescence measurements

B.R. Rae et al., Journal of Physics D: Applied Physics, Vol 41, No. 9, (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094011

The 310-340nm ultraviolet light emitting diodes grown using a thin GaN interlayer on a high temperature AlN buffer

T. Wang et al., Journal of Physics D: Applied Physics, Vol 41, No. 9, pp. 094003 (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094003

Novel polymer systems for deep UV microlens arrays

A.R Mackintosh et al., Journal of Physics D: Applied Physics, Vol 41, No. 9, pp. 094007 (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094007

New light from hybrid inorganic-organic emitters

C.R. Belton et al., Journal of Physics D: Applied Physics, Vol 41, No. 9, pp. 094006 (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094006

Micro-LED arrays: a tool for two-dimensional neuron stimulation

V. Poher et al., Journal of Physics D: Applied Physics, Vol 41, No. 9, pp. 094014 (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094014

Light emitting polymer blends and diffractive optical elements in high-speed direct laser writing of microstructures

H. Suyal et al., Journal of Physics D: Applied Physics, Vol 41, No. 094008, (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094009

Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion

Z. Gong et al., Journal of Physics D: Applied Physics, Vol 41, No. 094002, (2008). http://dx.doi.org/10.1088/0022-3727/41/9/094002


2007

Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output

Z. Gong et al., IEEE Transactions on Electron Devices, Vol 54, No. 10, pp. 2650-2658 (2007). http://dx.doi.org/10.1109/TED.2007.904991

Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode

V. Poher et al., Optics Express, Vol 15, No. 18, pp. 11196-11206 (2007). http://dx.doi.org/10.1364/OE.15.011196

Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures

G. Itskos et al., Physical Review B, Vol 76, No. 3, pp. 035344 (2007). http://dx.doi.org/10.1103/PhysRevB.76.035344


2006

Wavelength-tunable and white light emission from polymer-converted micropixellated InGaN ultraviolet light-emitting diodes

G. Heliotis et al., Journal of Optics A: Pure and Applied Optics, Vol 8, No. 7, pp. S445-S449 (2006). http://dx.doi.org/10.1088/1464-4258/8/7/S20

Microfabrication in free-standing gallium nitride using UV laser micromachining

E. Gu et al., Applied Surface Science, Vol 252, No. 13, pp. 4897-4901 (2006). http://dx.doi.org/10.1016/j.apsusc.2005.07.117

Membrane structures containing InGaN/GaN quantum wells, fabricated by wet etching of sacrificial silicon substrates

S.H. Park et al., Physica Status Solidi C, Vol 3, No. 6, pp. 1949-1952 (2006). http://dx.doi.org/10.1002/pssc.200565188

Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer

G. Heliotis et al., Advanced Materials, Vol 18, No. 3, pp. 334-338 (2006). http://dx.doi.org/10.1002/adma.200501949

Fabrication and characterization of diamond micro-optics

C.L. Lee et al., Diamond and Related Materials, Vol 15, No. 4-8, pp. 725-728 (2006). http://dx.doi.org/10.1016/j.diamond.2005.09.033

Characterization of MOVPE-grown GaInNAs quantum well with multi-barriers by Z-contrast imaging and SIMS

K.S. et al., Journal of Crystal Growth, Vol 287, No. 2, pp. 620-624 (2006). http://dx.doi.org/10.1016/j.jcrysgro.2005.10.143

Microstripe-array InGaN light-emitting diodes with individually addressable elements

H.X. Zhang et al., IEEE Photonics Technology Letters, Vol 18, No. 15, pp. 1681-1683 (2006). http://dx.doi.org/10.1109/LPT.2006.879926 


2005

Use of AlInN layers in optical monitoring of growth of GaN-based structures on free-standing GaN substrates

I.M. et al., Applied Physics Letters, Vol 87, pp. 151901 (2005). http://dx.doi.org/10.1063/1.2089175

Tapered sidewall dry etching process for GaN and its applications in device fabrication

H.W. Choi et al., Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol 23, No. 1, pp. 99-102 (2005). http://dx.doi.org/10.1116/1.1839914

Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light emitting polymer overlayer films

G. Heliotis et al., Applied Physics Letters, Vol 87, No. 103505, (2005). http://dx.doi.org/10.1063/1.2039991

Properties of natural diamond microlenses fabricated by plasma etching

H.W. Choi et al., Industrial Diamond Review, Vol 2005, No. 2, pp. 29-32 (2005). http://www.idr-online.com/

Polymer microlens arrays applicable to AllnGaN ultraviolet micro-light-emitting diodes

C.W. Jeon et al., IEEE Photonics Technology Letters, Vol 17, No. 9, pp. 1887-1889 (2005). http://dx.doi.org/10.1109/LPT.2005.851932

Nitride micro-display with integrated micro-lenses

H.W. Choi et al., Physica Status Solidi C, Vol 2, pp. 2903-2906 (2005). http://dx.doi.org/10.1002/pssc.200461340

Mask-free photolithographic exposure using a matrix-addressable micropixellated AllnGaN ultraviolet light-emitting diode

C.W. Jeon et al., Applied Physics Letters, Vol 86, No. 221105, (2005). http://dx.doi.org/10.1063/1.1942636

InGaN nano-ring structures for high-efficiency light emitting diodes

H.W. Choi et al., Applied Physics Letters, Vol 86, No. 2, (2005).  http://dx.doi.org/10.1063/1.1849439

Improved current spreading in 370nm AlGaN microring light emitting diodes

H.W. et al., Applied Physics Letters, Vol 86, No. 053504, (2005). http://dx.doi.org/10.1063/1.1861130

Impact of laser scribing for efficient device separation of LED components

E.K. Illy et al., Applied Surface Science, Vol 249, No. 1-4, pp. 354-361 (2005). http://dx.doi.org/10.1016/j.apsusc.2004.12.033

Fabrication of natural diamond microlenses by plasma etching

H.W. Choi et al., Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol 23, No. 1, pp. 130-132 (2005). http://dx.doi.org/10.1116/1.1843826

Fabrication and evaluation of GaN negative and bifocal microlenses

H.W. Choi et al., Journal of Applied Physics, Vol 97, No. 063101, (2005). http://dx.doi.org/10.1063/1.1857062

Enhanced areal efficiency from 370nm AlGaN micro-ring light emitting diodes

H.W. Choi et al., Physica Status Solidi C, Vol 2, No. 7, pp. 2854-2857 (2005). http://dx.doi.org/10.1002/pssc.200461339

Beam divergence measurements of InGaN/GaN micro-array light-emitting diodes using confocal microscopy

C. Griffin et al., Applied Physics Letters, Vol 86, No. 4, (2005). http://dx.doi.org/10.1063/1.1850599


2004

High density matrix-addressable AllnGaN-based 368-nm microarray light-emitting diodes

C.W. Jeon et al., IEEE Photonics Technology Letters, Vol 16, No. 11, pp. 2421-2423 (2004). http://dx.doi.org/10.1109/LPT.2004.835626

Sub-micron inGaN ring structures for high-efficiency LEDs

H.W. Choi et al., Physica Status Solidi C, Vol 1, No. 2, pp. 202-205 (2004). http://dx.doi.org/10.1002/pssc.200303910

Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays

E. Gu et al., Applied Physics Letters, Vol 84, No. 15, pp. 2754-2756 (2004). http://dx.doi.org/10.1063/1.1695101

GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses

H.W. Choi et al., Applied Physics Letters, Vol 84, No. 13, pp. 2253-2255 (2004). http://dx.doi.org/10.1063/1.1690876

Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique

H.W. Choi et al., Journal of Crystal Growth, Vol 268, No. 3-4, pp. 527-530 (2004). http://dx.doi.org/10.1016/j.jcrysgro.2004.04.085

High resolution 128x96 nitride microdisplay

H.W. Choi et al., IEEE Electron Device Letters, Vol 25, No. 5, pp. 277-279 (2004). http://dx.doi.org/10.1109/LED.2004.826541

Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser

E. et al., Thin Solid Films, Vol 453, No. 1, pp. 462-466 (2004). http://dx.doi.org/10.1016/j.tsf.2003.11.133

High extraction efficiency InGaN micro-ring light emitting diodes

H.W. Choi et al., Applied Physics Letters, Vol 83, No. 22, pp. 4483-4485 (2004). http://dx.doi.org/10.1063/1.1630352

Cathodoluminescence spectral mapping of III-nitride structures

R.W. et al., Physica Status Solidi A - Applications and Materials Science, Vol 201, No. 4, pp. 665-672 (2004). http://dx.doi.org/10.1002/pssa.200304089

InGaN microring light-emitting diodes

H.W. Choi et al., IEEE Photonics Technology Letters, Vol 16, No. 1, pp. 33-35 (2004). http://dx.doi.org/10.1109/LPT.2003.818903


2003

Fabrication of matrix-addressable InGaN-based microdisplays of high array density

C.W. Jeon et al., IEEE Photonics Technology Letters, Vol 15, No. 11, pp. 1516-1518 (2003). http://dx.doi.org/10.1109/LPT.2003.818643

Low resistivity contacts to p-type GaN by plasma treatment

H.W. Choi et al., Physica Status Solidi C, Vol 0, No. 7, pp. 2210-2213 (2003). http://dx.doi.org/10.1002/pssc.200303275

InGaN light-emitting diodes of micro-ring geometry

H.W. Choi et al., Physica Status Solidi C, Vol 0, No. 7, pp. 2185-2188 (2003). http://dx.doi.org/10.1002/pssc.200303365

A novel fabrication method for a 64x64 matrix-addressable GaN-based micro-LED array

C.W. Jeon et al., Physica Status Solidi A, Vol 200, No. 1, pp. 79-82 (2003). http://dx.doi.org/10.1002/pssa.200303292

Mechanism of enhanced light output in InGaN-based microlight emitting diodes

H.W. Choi et al., Journal of Applied Physics, Vol 93, No. 10, pp. 5978-5982 (2003). http://dx.doi.org/10.1063/1.1567803

Fabrication and performance of parallel-addressed InGaN micro-LED arrays

H.W. et al., IEEE Photonics Technology Letters, Vol 15, No. 4, pp. 510-512 (2003). http://dx.doi.org/10.1109/LPT.2003.809257


2002

Fabrication of two-dimensional InGaN-based micro-LED arrays

C.W. Jeon et al., Physica Status Solidi A, Vol 192, No. 2, pp. 325-328 (2002). http://dx.doi.org/10.1002/1521-396X(200208)192:2<325::AID-PSSA325>3.0.CO;2-Q

GaN microcavities formed by laser lift-off and plasma etching

R.W. Martin et al., Materials Science and Engineering B, Vol 93, No. 1-3, pp. 98-101 (2002). http://dx.doi.org/10.1016/S0921-5107(02)00042-9

Surface properties of GaN fabricated by laser lift-off and ICP etching

H.S. Kim et al., New Physics: Korean Physical Society, Vol 40, No. 4, pp. 567-571 (2002). http://dx.doi.org/10.3938/jkps.40.567


2001

Optical spectroscopy of GaN microcavities with thicknesses controlled using a plasma etch-back

R.W. Martin et al., Applied Physics Letters, Vol 79, No. 19, pp. 3029-3031 (2001).

http://dx.doi.org/10.1063/1.1415769

InGaN/GaN quantum well microcavities formed by laser lift-off and plasma etching

P.R. Edwards et al., Physica Status Solidi B, Vol 228, No. 1, pp. 91-94 (2001). http://dx.doi.org/10.1002/1521-3951(200111)228:1<91::AID-PSSB91>3.0.CO;2-D

In situ and ex situ evaluation of mechanisms of lateral epitaxial overgrowth

I.M. Watson et al., Physica Status Solidi A, Vol 188, No. 2, pp. 743-746 (2001). http://dx.doi.org/10.1002/1521-396X(200112)188:2<743::AID-PSSA743>3.0.CO;2-B

Characterisation of optical properties in micro-patterned InGaN quantum wells

K.S. Kim et al., Physica Status Solidi B, Vol 228, No. 1, pp. 169-172 (2001). http://dx.doi.org/10.1002/1521-3951(200111)228:1<169::AID-PSSB169>3.0.CO;2-7

Femtosecond laser machining of gallium nitride

T. Kim et al., Materials Science and Engineering B, Vol 82, No. 1-3, pp. 262-264 (2001). http://dx.doi.org/10.1016/S0921-5107(00)00790-X

Etch end-point detection of GaN-based devices using optical emission spectroscopy

H.S. Kim et al., Materials Science and Engineering B, Vol 82, No. 1-3, pp. 159-162 (2001). http://dx.doi.org/10.1016/S0921-5107(00)00798-4