Offshore platform

BEngNaval Architecture with Ocean Engineering

Why this course?

As a naval architecture student, you’ll learn to predict the stability and safety of ships, as well as their strength, speed, powering and propulsion requirements. You’ll discover how to calculate the motions of ships and other floating structures in rough seas, and how to estimate their reliability and safety in extreme conditions.

Ocean engineering deals with the technical aspects of fixed and floating marine structures and systems related to harnessing ocean resources. These include offshore oil and gas and the rapidly expanding area of ocean renewable energy, as well as other ocean resource activities such as subsea mining and aquaculture.

The degree aims to develop graduates capable of dealing with engineering challenges on a wide range of marine vehicles from tankers, bulk carriers, container ships and giant cruise liners to tidal current turbines and oil/gas platforms.

In addition to core naval architecture subjects, you'll study a range of specialised ocean engineering subjects and subjects related to the design of novel ship and offshore structures such as risk management and reliability analysis, station-keeping and control and sub-sea engineering.

For BEng students with the appropriate level of academic performance the opportunity to transfer on MEng programme is available.

What you’ll study

Years 1 & 2

Our courses have a common core on which you’ll build more specialist knowledge. In Years 1 and 2, you’ll follow this core so it’s possible to change course.

You’ll study engineering science and the fundamentals of naval architecture including:

  • buoyancy and floatation
  • stability
  • ship types
  • terminology

As you progress, you’ll study more specific naval architecture subjects such as:

  • resistance and propulsion
  • ship structural analysis
  • ship design
  • marine engineering systems
  • business and management subjects

Years 3 & 4

You’ll study more advanced subjects related to the design of conventional ships, and fixed and floating offshore platforms as well as subsea systems for extracting oil and gas offshore and devices for generating renewable energy from the ocean.

You’ll study state-of-the-art tools for analysing the water flow around ship hulls, predicting the stresses and strains in the hull structure, and the behaviour of ships in waves.

You’ll also study the dynamics of floating offshore platforms in waves, the loading on the platforms from the ocean waves, and how to predict the reliability of offshore structures.

There’s also a specialised individual project on a subject which you will choose. This can involve any combination of calculations, design, computer studies or tank-testing using any of the department’s facilities.

Work placement

Lots of our students go on work placements during the summer holidays. Due to our close links with industry, there are many work placement and internship opportunities for students.

Previous work placement opportunities include:

  • student internships at Samsung Heavy Industries ship building yard in South Korea
  • group work experience visits to ship building yards in China
  • numerous summer internships with various high-profile companies in the maritime and oil & gas industries
  • research internships within our own world class research centre


As a student, you'll have access to:

  • Catalina - our departmental racing yacht
  • the largest ship-model experiment tank in any UK university
  • towing/wave tank exclusively for teaching purposes
  • marine engine laboratory
  • hydrogen fuel cell laboratory
  • cutting-edge computer facilities
  • industry standard software

Student competitions

We support and promote students in various competitions and awards; from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years, some of our students have been triumphant in the following high profile competitions:

  • Science, Engineering & Technology Student of the Year (SET Awards)
  • Best Maritime Technology Student (SET Awards)
  • double winner of BP's Ultimate Field Trip competition
  • Strathclyder of the Year

Student mentoring

The Orchid programme is a mentoring programme for students managed by students in a confidential manner. It aims to assist students to achieve their academic goals and graduate with honours.

Orchid’s main objectives are to:

  • allow additional support and development for those who do not usually ask for assistance
  • allow students with high achievements to help fellow students
  • increase camaraderie

Open days & events

Applicants are invited to attend 'Insight', a half-day introduction to the department, which includes a question and answer session with a member of staff.

You can discover more about the degree programmes and the department, take part in activities and meet current staff and students. A number of these events are held between November and March. Please contact us regarding visits at other times.


Accredited by the Royal Institution of Naval Architects on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as Chartered Engineer.

Accredited by the Institute of Marine Engineering, science and Technology for the purpose of partial registration as a Chartered Marine Technologist.

Accredited by the Institute of Marine Engineering, Science and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as Chartered Engineer.

Course content

Year 1

Engineering Mechanics

This class will provide the basic tools to prepare you for more advanced studies in your course. You’ll gain an understanding of what has become known as classical mechanics including a study of forces, energy, work, momentum and heat. You’ll learn how these are connected and how they can be applied to engineering problems.

Introduction to Naval Architecture and Marine Engineering

Students are provided with a background of the various issues, terminology and concepts related to the course. You’ll learn about the importance of marine transportation to the global economy, industry and leisure industries and gain an understanding in applications of fundamental engineering principles related to the marine sector.

Analysis Tools for Marine Design

This class will equip you with some of the important basic graphical and computational tools required for the rest of the course. You’ll be introduced to tools such as AutoCAD, Rhino, Microsoft Excel, Mathcad and Matlab and be given the opportunity to consolidate the new theoretical knowledge gained in other modules through numerical exercises.

Mathematics 1B

This class will provide the basic mathematical requirements to prepare you for more advanced studies in your course. You’ll learn about the concepts and applications of functions, differentiation, integration and complex numbers.

Mathematics 2B

This class will provide the basic mathematical requirements to prepare you for more advanced studies in your course. You’ll learn about the concepts and applications of calculus, geometry, vectors, matrices and numerical methods.

Elective Classes

You'll have the opportunity to select an elective class from the University’s extensive list of classes permitted in Year 1.

Year 2

Hydrostatics and Stability of Marine Vehicles

This class will introduce you to the fundamental principles of naval architecture and will examine how they are applied in practice for floating bodies. You’ll learn about the principles of hydrostatics and the stability of marine vehicles, together with their application to safe operation.

Marine Engineering Fundamentals

This class will address the important principles related to marine engineering systems. You’ll learn about the fundamentals of thermodynamics, thermal systems, electrical networks, systems and machines.

Principles of Marine Design and Production

This class will explain the main activities carried out in a modern shipyard and critically examine the role of management service departments. You’ll learn about the basic principles of modern shipyard layout and rationalisation, steel production and outfitting methods.

Analysis and Design of Marine Structures 1

This class provides you with an introduction to fixed offshore structure design and the material science and properties of the materials used in the marine industry. You’ll develop a basic understanding of the application of structural mechanics to ship and offshore structures and develop your skills in solving simple problems in marine structures using structural mechanics and analysis software.

Engineering Applications for Naval Architects and Marine Engineers

Students are introduced to engineering philosophy and practice by a practical experience of design and manufacturing processes and technology applications appropriate to naval architecture and marine engineering. You’ll gain practical experience of the use of CAD and CAM software in marine design, an appreciation of design and production processes and take part in a substantial design, build and test exercise in the marine laboratory.

Mathematics 3B

This class will continue on from your mathematics classes in Year 1, further enhancing your mathematical requirements to prepare you for more advanced studies in your course. You’ll learn about advanced estimation methods, calculus and differential equations.

Year 3

Professional Development and Marine Business
This module will provide you with an insight into marine business and allow you to work on your ‘soft’ business skills. You’ll gain an appreciation of the fundamentals of communication, project work, planning and managerial skills, including writing, speaking, listening, interviewing and teamwork.
Marine Design

This module will examine the processes and methods used to design ships and other marine vehicles. You’ll learn about the design processes of marine vehicles and structures and gain an appreciation of the technical, economic and social influences on design and the influences of statutory regulations and classification society rules.

Hydrodynamics, Resistance and Propulsion

This class provides you with an introduction to the concepts and fundamentals of hydrodynamics. You’ll learn about how water flows past a ship or marine structures hull, how to calculate the resistance of a ship and hence how to calculate propulsion requirements.

Marine Engineering Systems and Control

You'll be provided with an introduction to automation and control theory with applications to marine systems. Students learn about the theory and design of pipe flow, heat exchangers, fuel systems, cooling systems etc. and how system integrity links with ship operation.

Analysis and Design of Marine Structures 2

This class provides an understanding of the techniques which may be used to analyse the behaviour of marine structural components like steel beams and plates. You’ll learn how to calculate bending moments, stresses and deflections of marine structures as well as gaining an understanding of the theoretical basis of finite element analysis.

The Marine Environment

An introduction to fluid mechanics as applied to marine hydrodynamics. You’ll learn about the key properties of waves and seastates, the methods used to calculate their energy and velocity, and how to model them through spectral techniques and analysis.

Offshore Oil & Gas Production Systems

This class provides you with a comprehensive overview of offshore hydrocarbon production to allow understanding of the essential processes. You’ll learn about the latest technical developments including details of drilling/production/transportation systems, particularly for the current deepwater offshore engineering as well as the related economic, geo-political and historical issues.

Marine Business and Financial Management

You'll acquire a broad appreciation of the marine industry and the key factors for successful projects.

You'll gain experience of working in teams, representing companies in the marine industry, and preparing a business plan for a proposed new venture.

Year 4

Seakeeping and Manoeuvring

This class will provide you with a demonstration of the important seakeeping characteristics of marine vehicles and explain the factors influencing this behaviour. You’ll learn how to identify the factors determining the manoeuvrability of a marine vehicle and study the implications to design and operability.

Theory and Practice of Marine CFD

This class will introduce you to the theoretical background of marine computational fluid dynamics (CFD) using the finite volume method. You’ll learn about the key equations of CFD for incompressible flow in finite volume form and how to solve them numerically. You’ll also have a go at solving a simple 2D engineering problem using a commercial CFD package.

Finite Element Analysis of Marine Structures

This module will provide you with a theoretical understanding of stiffness and finite element methods for marine structures. You’ll learn the theory of key concepts and then be given a simple engineering problem, in which you will code your own stiffness method program in Mathcad to solve.

Ship Structural Dynamics

Students investigate the effects of vibration on the structural performance of a ship and study the implications to design and operability. You’ll learn about design and operational parameters affecting ship motions, how to calculate the wave loading and response of ships and floating offshore platforms and the role of structural dynamics in ship design.

Structural Reliability

You'll be provided with an insight into the reliability-based design procedure for structural components in ships and offshore structures. You’ll learn about the various methods and how they can be extended to structural systems, inspection planning and safety factor selection in the development of rules.

Dynamics of Offshore Structures

This class provides you with an understanding of the factors influencing the dynamic behaviour of fixed and floating offshore structures due to environmental forces. You’ll learn about how to predict the dynamic and structural motion response of fixed and floating offshore platforms and how to design and analyse foundations for fixed offshore structures.

Ocean Engineering Project

Individual project: in this module, you'll carry out a project, under the supervision of a member of academic staff, in a topic area of interest to you. You’ll develop skills related to technical writing, literature searching, referencing and presentation.

Group project: along with a group of your peers, you'll conduct a variety of first principle calculations on various offshore structures, making use of previously learnt ocean engineering knowledge.


The main method of assessment is exams in January and May. Presentations, laboratory reports and other forms of coursework are submitted and marked individually throughout the year.

Each teaching year has two semesters of 10 weeks, which include formal lectures, tutorials, laboratory and coursework assignments, industrial visits, class tests, two weeks of additional tutorials and/or project presentations. This is followed by revision classes, private study and exams.

Most assignments involve associated tutorials for guidance. Group exercises, including presentations and peer assessment, are an important part of your development.

Learning & teaching

The main methods of teaching are lectures, tutorials, laboratory and group design classes. You can expect an average of 20 hours of these per week. You should supplement this with self-study. Self-study is important as it develops the confidence to tackle unfamiliar problems. This is an essential skill for professional engineers.

Throughout the course, field trips will give you first-hand experience of industrial activities in the marine sector.


Individual and group projects are a major part of the course from first year. First-year students carry out a basic design, build and evaluate project.

Second-year students work in teams on a more detailed design/build/test exercise as part of the Engineering Applications class.

Part of the third year Marine Design incorporates a ‘rules-based’ group design project.

In fourth year, students carry out a performance-based group design project as well as their major individual project.

External speakers and/or industrial support play an important part in group and individual project work.

Laboratory work

This is introduced from first year with sessions covering basic aspects of hydrostatics and stability.

In second year, students take part in the design and build of a small-scale racing yacht. This combines the use of professional Naval Architecture design software for hull design and computer-aided manufacture for hull generation. This is combined with hands-on practical skills and hydrodynamic testing.

An intensive laboratory-based class in third year involves more formal experimental testing, in which students carry out a number of hydrodynamics, dynamics and marine engineering experimental projects.

Fourth-year students have the opportunity to carry out a laboratory-based individual project.

Computer software

This is used to demonstrate the practical application of theory and also gives you exposure to current engineering practice.

The use of professional software to solve real engineering problems is introduced in first year and is reinforced throughout subsequent years. You’ll gain exposure to software packages for stability, dynamics and simulation, FEA, hydrodynamics, risk-based design as well as other more specialised software packages.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Entry requirements

Required subjects are indicated following typically accepted grades.


Standard entry requirements

AAAB or AABBB (Maths, Physics and/or Engineering Science AB/BA)

Advanced Highers

Maths and Physics recommended

A Levels

Year 1

BBB including Maths and Physics

Typical entry requirements: ABB (Maths, Physics)

Year 2

ABB including Maths and Physics

Typical entry requirements: AAA (Maths, Physics)

International Baccalaureate

32 (Maths HL5, Physics HL5)


HNC: Year 1 entry: pass a relevant HNC, A in Graded Unit 1

Year 2 entry: pass a relevant HND, AA in Graded Units 1 & 2

Please contact us before applying with HNC/HND.

Additional Information

  • Deferred entry accepted

Widening access

We want to increase opportunities for people from every background. Strathclyde selects our students based on merit, potential and the ability to benefit from the education we offer. We look for more than just your grades. We consider the circumstances of your education and will make lower offers to certain applicants as a result.

Find out if you can benefit from this type of offer.

International students

Find out entry requirements for your country.

Degree preparation course for international students

We offer international students (non EU/UK) who do not meet the academic entry requirements for an undergraduate degree at Strathclyde the option of completing an Undergraduate Foundation year programme at the University of Strathclyde International Study Centre.

Upon successful completion, you will be able to progress to this degree course at the University of Strathclyde.

Fees & funding

How much will my course cost?

All fees quoted are for full-time courses and per academic year unless stated otherwise.


  • 2019/20: £1,820

Rest of UK

  • 2019/20: £9,250

Assuming no change in Rest of UK fees policy over the period, the total amount payable by undergraduate students will be capped. For students commencing study in 2017/18, this is capped at £27,750 (with the exception of the MPharm and Integrated Masters courses); MPharm students pay £9,250 for each of the four years. Students studying on Integrated Masters degree programmes pay an additional £9,250 for the Masters year with the exception of those undertaking a full-year industrial placement where a separate placement fee will apply.


  • 2019/20 - £20,050

Scholarship opportunities

In addition to the University’s extensive scholarship portfolio, our department has several organisations offering sponsorships and scholarships to students each year, including RINA, IMarEST, Lloyd’s Register Foundation, American Bureau of Shipping, the Worshipful Company of Shipwrights and the Society for Underwater Technology.

New arrangements for scholarships and summer work are added continually so please refer to our scholarship search for more information.

Faculty of Engineering Excellence Scholarship (FEES) for International Students

If you're applying for an undergraduate course you'll be eligible to apply for a Faculty of Engineering Excellence Scholarship offering up to £4,000 towards your tuition fees for your first year of study and an additional £1,500 for each subsequent year.

The scholarship is available for application to all self-funded, new international (non-EU) fee paying students holding an offer of study for an undergraduate programme in the Faculty of Engineering at the University of Strathclyde. Please note you must have an offer of study for a full-time course at Strathclyde before applying.

You must start your full-time undergraduate programme at Strathclyde in the coming academic year (2019-20).

University preparation programme fees

International students can find out more about the costs and payments of studying a university preparation programme at the University of Strathclyde International Study Centre.

Additional fees 

Course materials & costs 

Cost of lab coats 

  • approx £14    

Costs of printing within the department 

  • £2 - 50 prints 
  • £4 - 100 prints 
  • £8 - 200 prints 

Placements & field trips 

For first year students, travel costs to Kelvin Hydro Dynamics Laboratory (KHL) will consist on average 3/4 return journeys from the University campus.  Second-year students should cost one travel journey per week to KHL for two semesters.  Third-year students should cost travel to KHL for at least one session.  

Fourth, fifth, MSc, and postgraduate research students will need to cost travel to KHL if work involves testing.  

*£1.90 cost of single ticket 

Other costs 

Cost of binding two copies of thesis and CD copy for postgraduate research students 

  • £23.50 - Cameron Bookbinders 

Charts, plotters and other materials for NM100 are available free to students.

Binding and printing costs for 4th, 5th year and MSc students 

  • £2 - 50 prints 
  • £4 - 100 prints 
  • £8 - 200 prints 

Binding costs at print unit 

  • £3 per book 

Departmental card for MSc students 

  • £5 deposit returned before graduation 

Please note: All fees shown are annual and may be subject to an increase each year. Find out more about fees.

How can I fund my studies?

Students from Scotland and the EU

If you're a Scottish or EU student, you may be able to apply to the Student Award Agency Scotland (SAAS) to have your tuition fees paid by the Scottish government. Scottish students may also be eligible for a bursary and loan to help cover living costs while at University.

For more information on funding your studies have a look at our University Funding page.

Students from England, Wales & Northern Ireland

We have a generous package of bursaries on offer for students from England, Northern Ireland and Wales

You don’t need to make a separate application for these. When your place is confirmed at Strathclyde, we’ll assess your eligibility. Have a look at our scholarship search for any more funding opportunities.

International Students (Non UK, EEA)

We have a number of scholarships available to international students. Take a look at our scholarship search to find out more.

Available scholarships

We have a wide range of scholarships available. Have a look at our scholarship search to find a scholarship.


With skills including analytical, numeracy and problem-solving Naval Architecture and Ocean Engineering graduates are suited to a wide range of career opportunities.

Recent job titles include:

  • Naval Architect
  • Ocean Engineer
  • Subsea Engineer
  • Marine Surveyor
  • Offshore Renewables Engineer
  • Project Engineer

Some graduates go on to postgraduate study or research.

Graduate achievements

Graduate Peter Dow won the Science, Engineering and Technology Student of the Year Award and best Maritime Technology Award for his excellent fourth year project on carbon capture and storage.

Martin Shaw, a former student of the department, is behind the design of the snake-like Pelamis wave energy device in Orkney.

Naval Architecture and Marine Engineering graduate Phil Kirk works as a Marine Engineer on one of Disney’s cruise ships in the Bahamas.

How much will I earn?

Your salary will depend on your individual role and the industry you work in.

However, the average salary for a marine engineer is £30,000 and £35,000 for a naval architect.*

* Information is intended only as a guide.


Contact us


How to apply – 10 things you need to know

  1. All undergraduate applications are made through UCAS
    Go to the UCAS website to apply – you can apply for up to five courses.
  2. It costs £12 to apply for a course
    The cost is £23 for two to five courses.
  3. The deadline is 15 January each year
    This is the application deadline for most courses. However, please check the details for your particular course. View a full list of UCAS key dates.

    Applications are still welcome from international students (non-EU) and those living in England, Wales and Northern Ireland.
  4. You might be asked to attend an interview
    Most of our courses make offers based on the UCAS application. However some might ask you to attend an interview or for a portfolio of work. If this is the case, this will be stated in the prospectus entry requirements.
  5. It’s possible to apply directly to Year 2
    Depending on your qualifications, you might be able to apply directly to Year 2 - or even Year 3 - of a course. Speak to the named contact for your course if you want to discuss this.
  6. There’s three types of decision
    • unconditional – you’ve already met our entry requirements
    • conditional – we’ll offer you a place if you meet certain conditions, usually based on your exams
    • unsuccessful – we’ve decided not to offer you a place
  7. You need to contact UCAS to accept your offer
    Once you’ve decided which course you’d like to accept, you must let UCAS know. You don’t need to decide until you’ve received all offers. UCAS will give you a deadline you must respond by.

    You’ll choose one as your firm choice. If the offer is unconditional or if you meet the conditions, this is the course you’ll study.

    You’ll also have an insurance choice. This is a back-up option if you don’t meet the conditions of your first choice.
  8. You don’t need to send us your exam results (Scotland, England & Wales)
    If you’re studying in Scotland, England or Wales, we receive a copy of your Higher/Advanced Higher/A Level results directly from the awarding body. However, if you are studying a different qualification, then please contact us to arrange to send your results directly.
  9. We welcome applications from international students

    Find out further information about our entry and English language requirements.

    International students who don’t meet the entry requirements, can apply for our pre-undergraduate programmes.

    There’s also an online application form.

    For further information:
  10. Here’s a really useful video to help you apply

Discover more about Strathclyde