Save this page
Save this page

My Saved Pages

  • Saved page.

My Saved Courses

  • Saved page.
Reset

Recently visited

  • Saved page.
Student operating machinery in the Strathclde Advanced Materials Research laboratory

MScAdvanced Mechanical Engineering with Industrial Placement

Why this course?

Mechanical engineers are currently in demand in all types of industry. This 18-month MSc course has been developed to provide high-calibre mechanical engineering graduates with an in-depth technical understanding of advanced mechanical topics. You’ll gain the specialist and generic skills necessary to contribute effectively in developing company capabilities, with practical experience provided by the industrial placement.

Industrial placement

You'll complete an industrial placement in the period from June to August, after you have completed the taught part of your degree, but before your final project. The Department will support you in making applications for industry internships. Please note that it's your responsibility to secure a work placement.

You'll be fully supported by the University while on a placement. You'll be allocated a University of Strathclyde supervisor who'll act as your point of contact during your placement.

Individual project

MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

What you’ll study

You can take up to nine technical modules and three generic modules. You'll also undertake an industrial placement and an individual project.

Further details about the available modules can found in the 'course content' tab.

MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Facilities

Our facilities include many laboratories and research centres including:

We also have local-access to a 3500 node region supercomputer.

Course content

You'll take 210 credits made up of 120 credits of taught modules, 30 credits industrial placement and 60 credits individual project. The 18 months full-time MSc course spans three semesters as follows:

Semester 1

Year 1, September to December - 60 credits of taught classes

Semester 2

Year 1, January to May - 60 credits of taught classes

Industrial placement

Year 1, June to September - 30 credits

Semester 3

Year 2, October to January - 60 credits dissertation

Please note: available modules are subject to change depending on your year of entry.

Optional classes

Pressurised Systems

This class aims to introduce the subject of industrial Pressurised Systems and ensure competency in the use of Standards and Design Codes. Pressurised Systems are inherently dangerous since they contain stored energy which must be carefully controlled. A methodology is set down whereby a range of pressurised components can be designed, manufactured, installed and operated to a high degree of safety.

Aerodynamic Performance

This module introduces students to the principles of experimental aerodynamics and computational aerodynamics performance assessment. It also provides an introduction to the importance of aeroelastic phenomena on aerodynamic design. A range of analysis techniques will be used to develop an understanding of the aerodynamic performance of aircraft and industrial aerodynamic problems.

Aerodynamic Propulsion Systems

The principles of propulsion systems for aircraft and rockets are covered. Throughout the class, the overall procedure and methodology for designing a propulsion device, starting from the aircraft concept and the associated engine requirements, through to the aero-thermal design of engine components is presented and discussed. Students will develop an understanding of the overall design process and the performance of aerospace propulsion systems.

Spaceflight Mechanics

This class is designed to provide a comprehensive overview of spaceflight mechanics, including both orbit and attitude dynamics. The classic two-body problem is solved then used to investigate various modes of orbit transfer and attitude stabilisation for both spin- and 3-axis stabilised spacecraft. The various elements of the class will be brought together to illustrate the mission analysis and design process.

Spaceflight Systems

This class is designed to provide a comprehensive overview of spaceflight systems. An overview of the complete spacecraft lifecycle from proposal, through delivery and operations is covered, along with the function and purpose of the spacecraft sub-system level components. The various elements of the class are brought together through the production of competitive proposals for a typical spaceflight system development program.

Machinery Diagnosis & Condition Monitoring

Condition monitoring and fault detection in structures and machinery plays an important part in the maintenance and protection of equipment, and has come to the fore since the recent advances in computer-based systems. This class provides an understanding of Condition Monitoring (CM) and its relevance to industry. Particular attention is paid to vibration-based health monitoring and signal (time series) analysis.

Engineering Composites

The promise claimed for new materials in engineering is most likely to be realised through the use of composites and ceramics. This class aims to give a basic understanding of modern composite materials and an appreciation of predictive modelling and design implications when composites are applied to engineering structures. The main composite manufacturing processes will be outlined.

Polymer & Polymer Composites

Polymer and polymer composite materials have been increasingly used in modern engineering applications such as aerospace, automotive, construction, marine, oil and gas. This class provides background knowledge of polymer and a basic understanding of modern polymer composites. The class will be balanced between science and engineering.

Industrial Metallurgy

Students will develop an understanding of applied industrial metallurgy. Topics include material selection, properties of metals and alloys, characterisation methods, welding engineering, heat treatment and degradation processes.

Materials for High Temperature Applications

This module gives students a thorough introduction to the materials science and metallurgy that underpins the design of high temperature applications. This will build on basic concepts to give an appreciation for the theory of alloy design and strengthening mechanisms, including an understanding of the importance of fracture and creep.

Gas & Steam Turbines

This module gives students an advanced knowledge of applications of both steam and gas turbines within the power generation industry. The module includes details of power-plants that have been developed specifically to integrate gas turbines such as (gas turbine exhaust gas) heat recovery steam generators (HRSGs) used in combined cycle gas turbine (CCGT) plants.

Boiler Thermal Hydraulics

This module aims to provide core knowledge of the modern conventional power plant boiler and to develop a critical awareness of the operation, design and integration of the key components that comprise a boiler system.

Energy Resources & Policy

Against the background of international commitments on atmospheric emissions, diminishing fossil fuel resources, renewable energy systems deployment and the liberalisation of energy markets, this module examines sustainable options for energy production, supply and consumption. The aim is to give students an understanding of current trends in the energy market, and to enable a critical evaluation of emerging ideas, technologies and policies especially in relation to new and renewable energy supply systems.

Electrical Power Systems

This module provides students with an understanding of the operation of modern electrical power systems featuring renewable and low carbon generation, along with the techniques to undertake a basic technical analysis of key electrical devices and systems.

Energy Modelling & Monitoring

This module provides an understanding of the theoretical and operational principles underlying simulation modelling of energy supply and demand systems and their environmental impact. The emphasis is on practical computer lab-based modelling exercises. It covers detailed energy system simulation, supply-demand matching, energy management and monitoring.

Generic modules

Select three from the following:

Design Management

This module provides a structured introduction to the Design Management process, issues and tools. Topics include Integrated Product Development, and the different approaches and aspects to design development including concurrent engineering, team engineering, product management, design management, distributed design, and decision support. Other topics cover the design activity, team and management organisational structures, key issues concerning design complexity, and design performance and innovation.

Project Management

This module provides students with skills relating to the use of engineering practices in Project Management with particular respect to the effective and efficient use of resources. The syllabus includes an introduction to project management techniques and project control, project networks including critical path analysis, procedural and graphical presentation techniques, an introduction to Contract Law and project budgetary control.

Risk Management

Under Health and Safety legislation, and under the wider European Post-Seveso Directives, it is mandatory for many industries to carry out risk assessments with the aim of showing that risk is As Low As Reasonably Practicable. This module introduces the fundamental techniques of risk analysis and risk-informed decision making. Students will learn the general principles of methods and their place in risk management, as well as the chance to develop skills in applying these methods to variety of engineering examples.

Sustainability

This module provides students with an understanding of the concepts of sustainability and sustainable development. The social, environmental, and economic impact of development strategies will be identified and the mitigation of negative impacts discussed. Topics covered include shifting world views with respect to technology and ecology, green politics, climate change, sustainable development and limits to growth.

Compulsory modules

Industrial Placement

Graduates increasingly need highly developed transferable professional skills to prepare for and to gain future employment. This class allows you to carry out placements and projects with industry to develop and refine professional skills while gaining credits in the process.

Individual Project

In this part of the course, students undertake supervised, individual project work, with the award of MSc being made on the basis of an acceptable thesis submission.

Learning & teaching

Students select from a combination of specialist and generic modules. The specialist modules focus on different technical aspects allowing tailored learning to suit individual needs. The generic modules provide other skills which are considered necessary for professional engineers.

To qualify for the MSc, students undertake an individual project which allows study of a selected topic in depth, normally industry-themed or aligned to engineering research at Strathclyde.

Assessment

The course is assessed through written assignments, exams and the individual project.

Entry requirements

Degree in engineering or physical sciences or equivalent professional qualification. Preferably a first or upper second-class honours degree, equivalent to a UK 2:1 degree.

English Language Requirements for International Students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course held at the University of Strathclyde International Study Centre, for international students (non EU/UK) who do not meet the academic entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

Upon successful completion, you will be able to progress to this degree course at the University of Strathclyde.

Fees & funding

2019/20

All fees quoted are for the full-time, 18-month, MSc course.

Scotland/EU

  • £8,750

Rest of UK

  • £11,565

International

  • £23,440

How can I fund my course?

Faculty of Engineering Excellence Scholarship (FEES) for International Students

If you're applying for an MSc course you'll be eligible to apply for a Faculty of Engineering Excellence Scholarship offering up to £3,000 towards your tuition fees.

The scholarship is available for application to all self-funded, new international (non-EU) fee paying students holding an offer of study for an MSc programme in the Faculty of Engineering at the University of Strathclyde. Please note you must have an offer of study for a full-time course at Strathclyde before applying.

You must start your full-time MSc programme at Strathclyde in the coming academic year (2019-20).

Take a look at a full list of scholarships available in the Faculty of Engineering

Scottish and non-UK EU postgraduate students

Scottish and non-UK EU postgraduate students may be able to apply for support from the Student Awards Agency Scotland (SAAS). The support is in the form of a tuition fee loan and for eligible students, a living cost loan. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from England

Students ordinarily resident in England may be to apply for postgraduate support from Student Finance England. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Wales

Students ordinarily resident in Wales may be to apply for postgraduate support from Student Finance Wales. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Northern Ireland

Postgraduate students who are ordinarily resident in Northern Ireland may be able to apply for support from Student Finance Northern Ireland. The support is a tuition fee loan of up to £5,500. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

International students

We have a large range of scholarships available to help you fund your studies. Check our scholarship search for more help with fees and funding.

Please note

The fees shown are annual and may be subject to an increase each year. Find out more about fees.

Careers

We work closely with the University's Careers Service. They offer advice and guidance on career planning and looking for and applying for jobs. In addition, they administer and publicise graduate and work experience opportunities.

High-calibre mechanical engineers are in demand throughout the world. This course is designed to meet industrial demand for qualified staff in the area of mechanical engineering. It's particularly suitable for graduate engineers in the following sectors:

  • aerospace
  • automotive
  • biomedical
  • construction
  • manufacturing
  • power
  • railway

Contact us

Apply

Advanced Mechanical Engineering with Industrial Placement

Qualification: MSc, Start date: Sep 2019, Mode of delivery: attendance, full-time

Discover more about Strathclyde