Advanced forming research centre

MSc/PgDipAdvanced Manufacture: Technology & Systems

Why this course?

This programme has been awarded academic accreditation from three institutes

Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade.

Manufacturing engineers therefore play a vital role in integrating technology and management within the sector to achieve added value and deliver superior performance.

This popular MSc programme is based within the Department of Design, Manufacture & Engineering Management, the only department in the UK combining end-to-end expertise from creative design, through engineering design, manufacture and management of the entire system.

This course is designed for:

  • graduates with experience in manufacturing, engineering, design or business who wish to develop their manufacturing expertise. This course is ideal for graduates wishing to transfer smoothly and effectively to a career in the manufacturing sector of industry
  • established manufacturing engineers, designers and managers working in the industry who are facing new challenges and increased areas of responsibility. New disruptive technologies also present a significant opportunity for existing professionals to further develop their career in advanced manufacturing technology systems

This course will prepare students for industrial careers within a reinvigorated global manufacturing sector. Students will develop specialist skills in areas such as:

  • manufacturing automation
  • advanced production techniques
  • micro/nano-manufacturing
  • materials and production technology
  • strategic technology management

At the end of the course you'll have a greater understanding of the methods, tools and techniques relating to advanced manufacturing technology and systems.

You'll be able to apply your knowledge and skills by taking part in projects to solve some of the technological problems currently faced by industry.

The course is run jointly with the Advanced Forming Research Centre (AFRC), a £65 million facility developing forming and forging technologies to support the development of high integrity components. The AFRC is one of seven elite centres that form the UK High Value Manufacturing Catapult which is the catalyst for the future growth and success of manufacturing in the UK.

Industrial experience

During the programme, you'll undertake an individual and group project.

For group projects, you'll have the opportunity to work with fellow students and an industrial client to address a practical problem. You'll gain direct industry experience to add to your CV, develop skills, manage a project through to completion and practice working in a multidisciplinary group preparing you for collaborative work throughout your future career.

We work with on average 50 organisations per year and previous students have worked with organisations such as:

2018/19

  • Adidas
  • Airlie Ice Cream
  • Drink Baotic
  • Promedics Orthopaedics
  • Rolls Royce
  • Spirit AeroSystems (Europe), Inc
  • Unilever

2017/18

  • Adidas
  • Alexander Dennis
  • Belle Bridal
  • Chivas Brothers Ltd
  • HATSUN Agro Products (India)
  • Johnstons of Elgin
  • Terex Trucks

2016/17

  • Adidas
  • Allied Vehicles
  • Jaguar Land Rover
  • NCR
  • RSPB Scotland
  • Weir Group
  • WEST Brewery

Accreditation

Accreditation by a professional body is a mark of assurance that programmes meet the standards set by a profession. It's an accepted and rigorous process that commands respect both in the UK and internationally.

Accreditation helps students, their parents and advisers choose quality degree programmes. It also confers market advantage to graduates from accredited programmes, both when they are seeking employment and also when they decide to seek professional qualification. Some employers require graduation from an accredited programme as a minimum qualification.

Our MSc Advanced Manufacture: Technology and Systems programme has been awarded academic accreditation from three institutes. This demonstrates the degree meets the UK Standard for Professional Engineering Competence (UK-SPEC) as outlined by the Accreditation of Higher Education Programmes (AHEP).

This accreditation is achieved through a panel of trained and expert accreditors looking closely at our programme’s content and delivery, including its relevance, coherence, challenge, assessment, staffing, quality assurance and resources.

The Accreditors also monitor that the programme is continually improving and in line with the latest best practice, providing assurance to our students that they are getting a relevant and quality degree.

Institution of Engineering and Technology (IET)

Accreditation has been awarded for this programme from the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for further learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Gaining accreditation isn’t just about ensuring the quality of our programmes, it also benefits you as a student. For example, being accredited by IET means that our graduates will benefit from a more straightforward process when applying for professional registration. Also, being part of an IET accredited programme is part of the eligibility criteria for many IET Scholarships and Prizes, including the Diamond Jubilee, Belling and BP Scholarships and IET Grants.

Institution of Engineering Designers (IED)

Accreditation has been awarded for this programme from the Institution of Engineering Designers (IED) on behalf of the Engineering Council as meeting the requirements for further learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Accreditation by IED means students would automatically be offered free IED student membership for the duration of their studies, would receive a bi-monthly journal ‘Engineering Designer’ in which they can submit articles for print and their final year projects would be eligible for entry into the IED Student Prize competition held annually.

These prizes are prestigious and are only awarded for outstanding engineering design projects. Student members can also place their CV on the IED website and have access to the Job Board which gives details of current vacancies within the field of Engineering Design. In addition, students will also be able to use the IED’s on-line CPD system.

Institution of Mechanical Engineers (IMechE)

Accreditation has been awarded for this programme from the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council as meeting the requirements for further learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Our programmes being accredited by IMechE mean that you can become an Affiliate member, giving you access to the library, support network and members-only content. Once you have finished your degree you can apply to be an Associate member, and start progressing to professional registration as an Ieng or Ceng. IMechE also run challenges and competitions for students such as Formula Student, the Railway Challenge and the Design Challenge.

Teaching staff

Some of the key course content will be taught by leading experts in manufacturing technology and product design and engineering management. High-profile teaching staff include:

Course content

Compulsory classes

Strategic Technology Management (10 credits)

This module aims to provide a series of strategic frameworks for managing high-technology businesses. The main focus is on the acquisition of a set of powerful analytical tools which are critical for the development of a technology strategy as an integral part of business strategy. These tools can provide a guiding framework for deciding which technologies to invest in, how to structure those investments and how to anticipate and respond to the behaviour of competitors, suppliers, and customers. The course should be of particular interest to those interested in managing a business for which technology is likely to play a major role, and to those interested in consulting or venture capital.

At the end of this module students will be able to:

  • Demonstrate a comprehensive understanding of the role and importance of technology in business strategy formulation process
  • Develop the ability to critically assess concepts, tools and techniques of managing technology for both stable and turbulent business environments
  • Evaluate complexity and develop appropriate technology strategy models for specific cases

Grades will be determined by class participation assessed through four two-page papers on case studies, which may be written in groups of 4 people (40%), and an individual final technology strategy report based on an in-depth exploration of technology strategy in an assigned industry (60%). There is no final exam.

Manufacturing Automation (10 credits)

This module aims to introduce students to the concepts and basic technology of manufacturing automation and to be able to select suitable applications and specify the type of automation to be used in specific cases.

The module covers: Automation in manufacturing industry, why and where; Industrial robots, automation and typical applications; Open and closed loop control; Problems in robot design and control; Types of motion control; Control system functions; Advantages and disadvantages of electric and fluid power systems; Types of electric motors and their control techniques, simple actuators for hydraulic and pneumatic systems; Methods of programming robots; Relative economics of human labour, reprogrammable and hard automation and Safety considerations for industrial robots and other automated systems.

At the end of this module students will be able to:

  • Demonstrate knowledge and understanding of why manufacturing automation is used
  • Describe the conditions under which manual and/or automated production methods would be applied
  • Analyse the configuration and technical specifications of an automation system suitable for a specified task
  • Synthesise a manufacturing task suited to a specified automated system
  • Analyse and understand the technological elements of drive and control, and machine vision, systems
  • Critically appreciate the kinematic and dynamic problems associated with the control of automated systems
  • Understand the implications of applying automation in human terms
  • Demonstrate knowledge of safety factors that must be considered when installing automation

Assessment and feedback is in the form of one coursework submission showing technical analysis of an aspect of automation and critical thinking on the design of systems (40%), an exam (50%) and in-class participation (10%).

Micro- and Nano-Manufacturing (10 credits)

This module aims for the student to acquire: (1) knowledge of the fundamentals of micro- and nano-products and of the manufacturing of such products (MEMS, micro-fluidic devices, micro-medical devices, micro-motors, microrobots, MOEMS, etc.), size-effects, material/interface behaviour at the micro-/nano-scale, challenges to manufacturing at low length-scales, etc.; (2) knowledge of micro-/nano-materials processing methods, techniques, industrially-viable processes, etc. and (3) experience and skills in the design/selection of micro- /nano-manufacturing processes, tools and equipment for real-world products.

It covers material behaviour, challenges, processes (subtractive, additive, deformation, replication, joining, hybrid processes including mechanical, thermal, chemical, electrochemical, electrical methods) and tools, machines and manufacturing systems.

At the end of this module students will be able to:

  • Explain key techniques used in the processes for the manufacture of micro-products
  • Correctly select technologies for specified products and materials
  • Demonstrate calculations of forming/cutting forces involved and analysis of stresses/temperatures involved in tools/machine-frames/workpiece as appropriate
  • Deliver a machine design (either for micro-machining or micro-forming) with detailed analysis and module designs, including a cost analysis on the machine designed.

Assessment and feedback is in the form of coursework (40%) and a project (60%), including a group project presentation and project report and individual assignment.

Advanced Forming and Technology Systems (10 credits)

This module aims to provide students with knowledge and understanding of the underlying principles of the metal forming theory and practice as applied to modern metal forming machines, tools and processes.

The module covers concepts and definitions including stress, yield condition, strain, flow laws, plastic work, evolution equations, meso and micro-scale approaches; limiting phenomena (shape accuracy, plastic flow localisation, fracture, tool strength, friction, microstructure); metal forming machines and tooling; bulk metal forming; sheet metal forming and incremental forming.

At the end of this module students will be able to:

  • Describe stress/strain relationship for metals undergoing plastic deformation
  • Explain the mechanism of plastic deformation at the meso and micro scale
  • Explain the effect of different factors on the net-shape forming capability
  • Discuss metal forming problems resulting from material and tool interaction
  • Explain limitations of the metal forming technology due to a tool/machine system
  • Discuss major elements and challenges for a forging system
  • Explain the idea and give examples of incremental metal forming operations

Assessment and feedback is in the form of an exam (80%) and coursework (20%)

Advanced Materials & Production Technology (10 credits)

This module aims to provide students with an introduction to the fundamentals of advanced materials, characterisation and advanced surface engineering. The module also covers advanced machining processes and technologies and the principles and practices of rapid prototyping and manufacturing.

The module covers: Severe plastic deformation, materials properties and characterisation; Advances in Machining including the machining of hard materials, high-speed machining, precision grinding technology; ultra precision diamond turning and grinding technology; Principles and practice of Layered Manufacturing; Advanced Surface Engineering including physical-chemical functionalisation, electro-deposition, CVD, PVD, tools/mould treatment, nano- and multi-layered coating.

At the end of this module students will be able to:

  • Describe processes of materials selection, characterisation, ultra-precision machining, rapid prototyping and advanced surface engineering
  • Demonstrate know-how on key processing parameters and show numerical and analytical skills relating to the materials and process selections and parameter setting
  • Identify key process parameters/variables in relation to process control and product quality
  • Specify machines or manufacturing systems for the manufacture/creation of specified products/models or to propose design solutions for a manufacturing machine/system to address the manufacturing requirements identified

Assessment and feedback is in the form of four pieces of coursework (25% each).

Postgraduate Group Project (40 credits)

This module aims for students to integrate and apply design, manufacturing and engineering management knowledge and skills to an industry based product and process development project and to develop project management skills.

The module consists of a team-based industrial project where an outline project brief is set by an industrial client. The team is expected to manage all aspects of the project through to a finished solution. This can be a product, system or process depending on the nature of the project. Teams meet with academic staff and industrial clients regularly through the project.

At the end of this module students will be able to:

  • Have in-depth understanding and knowledge of products and management practices in industry
  • Critically review and evaluate products and management practices of the particular company and the business impact of proposed solution
  • Demonstrate knowledge and ability in applying and using various analysis and modelling tools and techniques
  • Demonstrate project planning and management, presentation, consulting and team working skills
  • Plan, control and lead an industrial project from inception to completion.
  • Evidence achieving deliverables which meet the client company requirements.

Assessment and feedback includes a project report, a presentation to the client and any other deliverables specified in the project brief.

Postgraduate Individual Project (60 credits)

The aim of the individual project is to allow students to combine the skills learned in other modules of the course and apply them within a significant project in a specific area of design, manufacture, or engineering management. This will be achieved through students carrying out work into a particular topic relating to their course and preparing a dissertation that documents the project.

On completion of the module the student is expected to be able to:

  • Define a valid project in a cutting-edge field of study relevant to the student’s degree – with an appropriate methodology and work plan for the project
  • Plan, manage and complete project, involving where appropriate technical analysis and independent critical thinking. This involves giving a thorough, logical and critical review of the subject matter; using appropriate tools, processes and levels of analysis in the project and applying project management techniques to manage a successful project
  • Document their project using suitable presentation techniques (such as language, figures, writing, layout, structure etc.); showing clear evidence of the value of the project and its outcomes and describing the project with clarity

Based on the work of a project, a student will submit an individual dissertation that will account for 90% of the final mark for the class. An interim project justification report will account for the remaining 10% of the mark.

Elective classes

Choose no fewer than 20 credits from:

Mechatronic Systems Design Techniques (10 credits)

This module introduces design techniques and mechatronic systems at an advanced level in order to enable students to understand the application of advanced design techniques and development platforms for modern products and engineering systems. It provides opportunities for students to develop technology-focused products/systems by using the state-of-the-art hardware platforms and industry-standard software development tools within the class environment.

The module covers: Mechatronic system design process (including Product/system design specifications (PDS), concept generation and selection, mechatronic system design and flow chart diagrams); Sensing and actuation (including sensing theory, sensor selection, drive design and motor control); Control systems (understanding and applying control theory in a mechatronic system design); Hardware and software design (including software design basics, algorithm and code design, programming tools and software engineering principles); Prototyping and evaluation (prototyping methods and tools including rapid prototyping and computer modelling).

At the end of this module students will be able to:

  • Demonstrate knowledge and understanding of advanced design methodologies, design process models and techniques for mechatronic systems
  • Demonstrate the design process to generate mechatronic design solutions and prototyping skills
  • Demonstrate knowledge and understanding of state-of-the-art processor architecture on modern embedded computing platforms
  • Describe processor architecture and the interface with real-world interactions
  • Apply knowledge to the modern embedded computing platforms, including selection of sensors and actuator to formulate a basic control system in mechatronic product design
  • Apply design basics and tools to the development of software for mechatronic products

Assessment and feedback is in the form of two assignments. Both are carried out in groups and assessed in terms of the quality of report and presentation/demonstration (50%/50%).

Strategic Supply Chain Management (10 credits)

This module aims to provide students with a critical understanding of the fundamental building blocks of Supply Chain Management (SCM) and e-Supply Chains from a strategic perspective with a view to developing their capabilities in modelling, analysing, diagnosing and re-designing/improving supply chains.

It covers Understanding the Supply Chain; Strategies alignment; Supply Chain performance; Supply Chain benchmarking; Sourcing decisions; Supply Chain network design; Sustainability in the supply chain and case studies.

At the end of this module students will be able to:

  • display an understanding of the fundamental building blocks of supply chains, including terminology; factors associated with SCM (business, technological, logistical and legal factors) and the relationship between traditional management functions and technology (such as marketing, purchasing, IT etc)
  • demonstrate a critical understanding of how to analyse and diagnose supply chains from a strategic perspective by modelling supply chains; analysing supply chain practices and performance and drawing up supply chain improvement/development strategies for a chosen business
  • display an understanding of sustainability issues in modern supply chains including key concepts; methods to assess sustainability and the ability to propose strategic improvements for the sustainability of supply chains

Assessment and feedback is in the form of two in-class tests (40%) and one coursework (60%).

Fundamentals Of Lean Six Sigma (10 credits)

This module aims to introduce students to the principles of Lean and Six Sigma. From Continuous Improvement approaches to organisational requirements, the module covers the critical success factors needed to support sustainable and effective business transformation.

The module covers: an Introduction to Lean Thinking, Six Sigma, and Lean Six Sigma (LSS); Comparing and Contrasting Lean & Six Sigma; DMAIC Continuous Improvement Methodology; LSS project characterisation and selection; Lean and Six Sigma metrics; Overview of basic Lean Tools and Techniques including: affinity diagram, project charter, project selection matrices, SPC, Ishikawa, 5 Why’s, 5S, SMED, DoE, etc.; Evolution of Lean Six Sigma (from manufacturing to service environments and the implications of each).

At the end of this module, students will be able to:

  • gain an appreciation for Lean Six Sigma as a Continuous Improvement methodology, and understand the implications of its application in manufacturing, transactional and service processes
  • apply the Lean Six Sigma methodology (DMAIC) and basic Continuous Improvement tools to solve real world problems
  • evaluate the Critical Success Factors and fundamental barriers in the execution of both Lean & Six Sigma initiatives

Assessment and feedback is in the form of an exam (35%) and an assignment in the form of a project report (60%) and project presentation (5%).

Sustainable Product Design & Manufacturing (10 credits)

This module covers one of the major challenges of modern industry which is to address the need for sustainable product development and manufacturing. International legislation and increasing costs of fiscal instruments such as the landfill tax now aim to force producers to reduce the environmental impacts of their products and processes. Accelerating globalization and industrialization continues to exacerbate complexity of sustainability. Whilst manufacturers are constantly required to lower their costs and maintain their competitiveness, legislations require them to look at lifecycle costs.

At the end of this module students will be able to:

  • Understand the importance of sustainable product development and sustainable manufacturing and how to establish competitive advantage and appreciate the key legislation affecting modern industry
  • Demonstrate an understanding of the engineers’ role in problem & solution to this and how to establish competitive advantage (e.g. via operational efficiency and effectiveness, new opportunities and enhanced enhancing marketing and customer goodwill)
  • Describe End- of- Life issues and critically discuss the place of reuse processes in Sustainable Design and Manufacturing, as well as identifying the various reuse processes
  • Identify the product features and characteristics that facilitate and hinder product recovery and redesign them for enhanced sustainability
  • Identify the fundamental “building blocks” of LCA and describe/illustrate the use of LCA in lifecycle decision making, as well as describing Biomimicry use in product design

Assessment and feedback will be in the form of coursework (70%) and a lab project (30%).

Systems Thinking & Modelling (10 credits)

This module aims to introduce students to the theories and principles of Systems Thinking. The module also introduces the methods, tools and techniques for modelling, analysing, improving and designing systems in a variety of organisations including industrial, commercial and public sector.

The module covers: Systems theory, concepts and approaches; Hard and soft systems analysis and systems dynamics; Systems and organisational performance – including leadership in a systems environment and ‘design’ in a systems environment and Practical application of Systems Thinking.

At the end of this module students will be able to:

  • show clearer understanding and knowledge of hard and soft approaches and how they can be used to deal with complexity and system behaviour in a business context
  • develop understanding of fundamental cybernetic principles that form the foundations of Checkland’s Soft System Methodology and Beer’s Viable System Model
  • develop knowledge and skills in systems analysis and business process modelling
  • critically evaluate the most appropriate methodology to model, analyse and design engineering/business systems across a range of organisations
  • demonstrate an understanding of how to model a business system and to develop a solution to solve a business system problem
  • develop an awareness of the importance of system approaches in management interventions

Assessment and feedback is in the form of a group presentation and one coursework in the form of a reflective diary.

Project Management (10 credits)

This module aims to provide students with skills and knowledge relating to the use of engineering practices in Project Management with particular respect to the project triple constraint: time, cost and quality.

The module covers: project management principles, concepts and processes; organisational influences, project stakeholders and project life cycle; project scoping such as project definition, project objectives, project deliverables, and work breakdown structure; Project planning and scheduling: definition of events, activities and nodes, network diagram, analysis of critical path, PERT method and use of industry standard software packages; Project controlling: cost estimate, budget setting, risk identification and assessment and contingency planning.

At the end of this module students will be able to:

  • Demonstrate a good understanding of project management practices and practical skills to manage project scope – including translating project specifications into work packages
  • Define and schedule project activities using tools such as critical path and PERT methods; estimate cost and determine budget using analogous and three-point estimating methods; identify and control quality standards using cost of quality and other tools
  • Develop a good understanding of the inter-dependency between various project management knowledge areas, such as managing projects under constraints; identifying and assessing risks and developing contingency plans
  • Understand the importance of project stakeholders and their impact on project management, including managing stakeholder relationships

Assessment and feedback is in the form of a group report (50%) and an individual project (50%).

Design of Experiments for Process Optimisation (10 credits)

This module aims to introduce students to statistically planned experiments and industrial measurements.

The module covers: Basic concepts of quality such as inspection and parameter design; Statistically planned experiments including two-level and three-level factorial experiments; Taguchi’s contribution to quality improvement including location/dispersion analysis and strategy for robust design; Test and measurement system including signals processing, DAQ hardware and software and Graphical programming (LabView).

At the end of this module students will be able to:

  • demonstrate knowledge and understanding of design of experiments
  • demonstrate knowledge and understanding of Taguchi’s approach to quality improvement
  • demonstrate knowledge and understanding of test and measurement systems

Assessment and feedback is in the form of two pieces of coursework:

  • Coursework 1 – plan and evaluate a factorial experiment using Excel (60%)
  • Coursework 2 – design a data acquisition application using LabView (40%)

 

Entry requirements

MSc

First or second-class Honours degree, or equivalent, in a relevant engineering, technology or science discipline.

PgDip

Degree, or good HND plus relevant industrial experience, may be considered for entry to the Postgraduate Diploma. Depending on satisfactory progress, students may transfer from the Diploma to the Master’s course.

English Language Requirements

IELTS (for international students)
6.0 overall with no individual component below 5.5

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course held at the University of Strathclyde International Study Centre, for international students (non EU/UK) who do not meet the academic entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

Upon successful completion, you will be able to progress to this degree course at the University of Strathclyde.

Fees & funding

2019/20

All fees quoted are for full-time courses and per academic year unless stated otherwise.

Scotland/EU

  • £8,100

Rest of UK

  • £9,250

International

  • £20,050

How can I fund my course?

Scholarship search

Faculty of Engineering Excellence Scholarship (FEES) for International Students

If you're applying for an MSc course you'll be eligible to apply for a Faculty of Engineering Excellence Scholarship offering up to £3,000 towards your tuition fees.

The scholarship is available for application to all self-funded, new international (non-EU) fee paying students holding an offer of study for an MSc programme in the Faculty of Engineering at the University of Strathclyde. Please note you must have an offer of study for a full-time course at Strathclyde before applying.

You must start your full-time MSc programme at Strathclyde in the coming academic year (2019-20).

Scottish and non-UK EU postgraduate students

Scottish and non-UK EU postgraduate students may be able to apply for support from the Student Awards Agency Scotland (SAAS). The support is in the form of a tuition fee loan and for eligible students, a living cost loan. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from England

Students ordinarily resident in England may be to apply for postgraduate support from Student Finance England. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Wales

Students ordinarily resident in Wales may be to apply for postgraduate support from Student Finance Wales. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Northern Ireland

Postgraduate students who are ordinarily resident in Northern Ireland may be able to apply for support from Student Finance Northern Ireland. The support is a tuition fee loan of up to £5,500. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

International students

We have a large range of scholarships available to help you fund your studies. Check our scholarship search for more help with fees and funding.

Please note

The fees shown are annual and may be subject to an increase each year. Find out more about fees.

Careers

Advanced manufacturers are often defined as those that succeed in today’s competitive environment. Those manufacturers have the unique ability to create a competitive advantage by being able to think and do faster, and by definition, those advantages make them advanced.

As competition across industry increases, alongside globalisation and supply chain opportunities grow, those in advanced manufacturing careers are highly sought after. Advanced manufacturing is at the top of all international agendas and experts in this field will continue to be needed.

Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade. This course introduces latest state-of-the-art knowledge and practical hands-on insight into:

Manufacturing automation

  • Micro- and nano-manufacturing
  • Advanced forming and technology systems
  • Advanced materials and production technology

After graduating with a MSc in Advanced Manufacture: Technology and Systems you will be in a strong position to seek employment with companies such as:

  • BAE Systems
  • Jaguar Land Rover
  • Rolls Royce
  • Proctor & Gamble and many more!

Graduates could have job titles such as:

  • Advanced Manufacturing Engineer
  • Continuous Improvement Engineer
  • Advanced Manufacturing Specialist
  • Manufacturing Process Engineer
  • Senior Advanced Design Engineer

According to Payscale*, the average Advanced Manufacturing Engineer salary is $85,077 with a $5,500 bonus.

*Last accessed 15 February 2019

Contact us

Apply

Advanced Manufacturing: Technology and Systems

Qualification: PG Diploma, Start date: Sep 2019, Mode of delivery: attendance, full-time

Advanced Manufacturing: Technology and Systems

Qualification: PG Diploma, Start date: Sep 2019, Mode of delivery: attendance, part-time

Advanced Manufacturing: Technology and Systems

Qualification: MSc, Start date: Sep 2019, Mode of delivery: attendance, full-time

Advanced Manufacturing: Technology and Systems

Qualification: MSc, Start date: Sep 2019, Mode of delivery: attendance, part-time

Discover more about Strathclyde

Design, manufacture & engineering management - our research

We're focused on 'Delivering Total Engineering' through excellent research in advanced design and manufacturing.

Design, manufacture & engineering management, student

Life in Glasgow

We're one of Europe's most vibrant cities. Voted the ‘friendliest city in the world’ in the Rough Guide in 2016, we're also named a must-visit destination in the New York Times, The Guardian and Wanderlust.

Glasgow at Night - Clyde, Crane, Armadillo, Hydro

Department of Design, Manufacture & Engineering Management

We're focused on 'Delivering Total Engineering' through research excellence, effective industrial partnerships and creative engineering education.